• 제목/요약/키워드: 정보역전

검색결과 345건 처리시간 0.02초

신경망이론을 이용한 비중심 F분포 확률계산 (Computation of Noncentral F Probabilities using Neural Network Theory)

  • 구선희
    • 한국컴퓨터정보학회논문지
    • /
    • 제1권1호
    • /
    • pp.83-94
    • /
    • 1996
  • ANOVA 검정에서 검정통계량은 단일 또는 이중 비중심F분포를 따르며 비중심F분포는 일반적인 선형 가설 검정에서 검정함수 계산에 적용되고 있다. 본 논문에서는 단일 비중심F분포의 누적함수 계산에 신경망이론을 적용하였다. 신경망 구조는 다층 퍼셉트론이며 학습과정은 역전과 학습알고리즘이다. 신경망이론에 의하여 계산한 결과와 Patnaik 이 제시한 확률값을 비교하여 제시하였다.

  • PDF

신경망을 이용한 번호판 영역 검증에 관한 연구 (A Study of Car Plate Verification using Neural Network)

  • 강동구;이병모;최선아;김성우;차의영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.667-669
    • /
    • 2002
  • 번호판 인식은 번호판 영역 추출 세그멘테이션, 인식의 3단계로 나눈다. 일반적으로 번호판 영역을 검출하는 과정에서 여러 후보영역이 추출되는데 검증 과정을 통해 그 중 하나를 선택한다. 따라서 적절한 검증 방법은 번호판 인식의 신뢰성을 높히기 위해 필수적이다. 본 논문은 다층 신경망에 사용하는 대표적인 알고리즘 중 하나인 역전과 알고리즘을 이용하여 번호판 후보 영역을 검증하는 방법을 제시한다. 신경망을 통한 학습을 위해 우선 적절한 훈련 이미지를 수집해야한다. 특히 번호판 이미지가 아닌 훈련 데이터를 수집하는 것은 어려운 문제이다. 본 논문에서는 효과석인 훈련 데이터 수집의 방법과 특징 벡터 생성에 대하여 제안하고 이 방법의 효용성을 실험을 통하여 검증한다.

  • PDF

병렬 프로그래밍 개념 LINDA의 간편화 (Simplification of Parallel Programming Concept LINDA)

  • 박영환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (3)
    • /
    • pp.642-644
    • /
    • 2000
  • 본 논문은 병렬 프로그래밍 개념 LINDA에서 read()와 in() 프리미티브의 역전에 따른 데드락 문제를 read() 프리미티브를 제거하고 in() 프리미티브와 튜플에 계수(counter) 필드를 추가하는 간편화를 통하여 해결하는 방법에 대하여 기술한다. 기존의 LIMDA 개념에서 read()와 in() 프리미티브의 차이는 전자는 튜플을 읽기만 하고 후자는 읽은 후 그 튜플을 지운다는 점에 있다. 결국 같은 튜플에 대하여 in() 프리미티브가 먼저 실행된다면 read() 프리미티브의 서비스를 요구한 프로세스는 한없이 기다리게 되는 문제가 있다. 따라서 각 프리미티브를 사용해야 하는 시점을 사용자가 주의 깊게 결정해야 하지만 이것이 병렬 프로그램의 개발에서는 그리 쉬운 일이 아니다. 따라서 본 논문에서는 read(0와 in() 프리미티브 2가지를 결합하여 in() 프리미티브 한가지와 튜플에 추가된 counter 필드를 이용하여 이 문제를 해결할 수 있는 방법을 소개한다.

  • PDF

얼굴의 다중특징을 이용한 인증 시스템 구현 (A study on the implementation of identification system using facial multi-feature)

  • 정택준;문용선;박병석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 춘계종합학술대회
    • /
    • pp.448-451
    • /
    • 2002
  • 본 연구는 인식의 정확성을 향상시키기 위하여 단일 특징을 이용한 인식 대신에 다중 특징을 이용하는 인식방법을 제안한다. 각각의 특징은 다음과 같은 방법으로 구하여진다. 얼굴 전체의 특징은 웨이블렛 다해상도 분해와 주성분 분석방법으로 계산하였고, 입술의 경우는 입술의 경계를 구한 후 최소 자승법을 이용한 방정식의 계수를 구하였으며, 또 하나의 특징은 얼굴요소의 거리 비율에 의해 구하였다. 위 값들을 입력으로 한 역전파 학습 알고리즘으로 분류하여 실험하여 제안된 방범의 유효성을 확인하였다.

  • PDF

자기조직화 교사 학습에 의한 패턴인식에 관한 연구 (A Study on Pattern Recognition with Self-Organized Supervised Learning)

  • 박찬호
    • 정보학연구
    • /
    • 제5권2호
    • /
    • pp.17-26
    • /
    • 2002
  • 본 연구에서는 자기조직화 교사학습 신경망인 SOSL(Self-Organized Superised Learning)과 이 신경망의 구조를 제안한다. SOSL신경망은 하이브리드 형태의 신경망으로써 다수 개의 컴포넌트 에러 역전파 신경망들과 수정된 PCA신경망으로 구성된다. CBP신경망은 군집화되고 복잡한 입력패턴에 대하여 교사학습을 병렬적으로 수행한다. 수정된 PCA신경망은 군집화 및 지역투영에 의하여 원 입력패턴을 보다 작은 차원으로 변환시키기 위하여 사용된다. 제안된 SOSL은 많은 입력패턴을 가짐으로써 큰 네트워크 크기를 가지게 되는 신경망에 효과적으로 적용이 가능하다.

  • PDF

퍼지제어 시스템을 위한 인공신경망 설계 (Design of Artificial Neural Networks for Fuzzy Control System)

  • 장문석;장덕철
    • 한국정보처리학회논문지
    • /
    • 제2권5호
    • /
    • pp.626-633
    • /
    • 1995
  • 퍼지 시스템 모델링에 있어서, 퍼지 규칙을 인식하고 퍼지 추론의 소속함수를 조 정하기란 매우 어렵다. 본 논문에서는 인공신경망을 이용함으로써, 자동으로 퍼지 규 칙을 인식하고 동시에 퍼지 추론의 소속함수를 조정할 수 있는 퍼지신경망 모델을 제 시하고, 인공신경망의 수렴도를 향상시키기 위해 개선된 역전파 알고리즘을 사용하여 학습에 사용하였다. 이 방법의 타당성을 로보트 매니풀레이터를 통해 검증 한다.

  • PDF

신경망을 이용한 고신뢰성의 회귀분석 모델 (Regression Model With High Reliability by Using Neural Networks)

  • 조용현
    • 정보처리학회논문지B
    • /
    • 제8B권4호
    • /
    • pp.327-334
    • /
    • 2001
  • 본 논문에서는 기울기하강과 동적터널링이 조합된 학습알고리즘의 다층신경망을 이용한 고신회성의 회귀분석 모델을 제안하였다. 기울기하강은 빠른 수렴속도의 최적화가 가능하도록 하기 위함이고, 동적터널링은 국소최적해를 만났을 때 이를 벗어난 새로운 연결가중치를 설정하여 전역최적해로 수렴되도록 하기 위함이다. 또한 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 주요성분분석 기법의 속성을 살려 학습데이터의 차원을 감소시킴으로서 고차원의 학습데이터에 따른 회귀분석 모델의 제약도 동시에 해결하였다. 제안된 기법의 신경망을 3개의 독립변수 패턴을 가진 암모니아 제조공정문제와 10개의 독립변수 패턴을 가진 자동차 연비문제에 각각 적용하여 시뮬레이션한 결과, 기존의 역전과 알고리즘의 신경망이나 주요성분분석에 의한 차원을 감소시키지 않은 학습패턴을 이용한 신경망보다 각각 더욱 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다. 또한 학습패턴의 영평균 정규화로 회귀용 신경망의 성능을 더욱 더 개선하였다.

  • PDF

다중 에이전트 강화학습을 위한 SOM 기반의 일반화 (SOM_Based Generalization for Multiagent Reinforcement Learning)

  • 임문택;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 춘계학술발표논문집 (상)
    • /
    • pp.565-568
    • /
    • 2002
  • 본 논문에서는 에이전트간의 통신이 불가능한 다중 에이전트 환경에서 각 에이전트들이 독립적이면서 대표적인 강화학습법인 Q-학습을 전개함으로써 서로 효과적으로 협조할 수 있는 행동전략을 학습하려고 한다. 하지만 단일 에이전트 경우에 비해 보다 큰 상태-행동공간을 갖는 다중 에이전트환경에서는 강화학습을 통해 효과적으로 최적의 행동 전략에 도달하기 어렵다는 문제점이 있다. 이 문제에 대한 기존의 접근방법은 크게 모듈화 방법과 일반화 방법이 제안되었으나 모두 나름의 제한을 가지고 있다. 본 논문에서는 대표적인 다중 에이전트 학습 문제의 예로서 the Prey and Hunters Problem를 소개하고 이 문제영역을 통해 이와 같은 강화학습의 문제점을 살펴보고, 해결책으로 신경망 SOM 을 이용한 일반화 방법을 제안한다. 이 방법은 다층 퍼셉트론 신경망과 역전파 알고리즘을 이용한 기존의 일반화 방법과는 달리 군집화 기능을 제공하는 신경망 SOM 을 이용함으로써 명확한 다수의 훈련 예가 없어도 효과적으로 채 경험하지 못한 상태-행동들에 대한 Q 값을 예측하고 이용할 수 있다는 장점이 있다.

  • PDF

구간 신경망에 의한 구간 벡터의 식별 (Classification of Interval Vectors by Interval Neural Networks)

  • 권기택
    • 한국산업정보학회논문지
    • /
    • 제6권2호
    • /
    • pp.1-6
    • /
    • 2001
  • 본 논문에서는 구간 데이터 식별을 위한 구간 신경망의 학습 알고리즘을 제안한다. 제안된 기법은 각 데이터의 속성치가 구간으로 주어져 있는 경우의 패턴 식별 문제에 적용된다. 먼저, 구간 입력 벡터를 다루기 위한 구간 신경망의 구조를 제안하고, 평가 함수를 이용하여 학습 알고리즘을 도출한다. 평가 함수는 구간 신경 망으로부터의 구간 출력과 대응하는 목표 출력을 이용하여 정의된다. 마지막으로 컴퓨터 시뮬레이션에 의해 제안 기법의 구간 데이터 식별 능력을 나타내고, 통상의 역전파 신경망을 이용 기법과 비교한다.

  • PDF

부궤환을 이용한 광대역 전치증폭기 설계 (Design of Ultrabroadband Pre-amplifier using Negative Feedback)

  • 김평국;박청룡;부종배;김갑기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.485-488
    • /
    • 2005
  • 본 논문에서는 광대역전력증폭기에 사용가능한 전치증폭기를 설계하였다. 설계된 전치증폭기는 주파수 특성과 잡음특성이 우수한 WJ사의 AM1을 사용하였다. 부궤환을 이용하여 100MHz ${\sim}$ 3GHz 대역에 걸쳐서 우수한 VSWR 특성과 주파수 특성을 갖도록 설계하였다.

  • PDF