• Title/Summary/Keyword: 정보시스템 개발

Search Result 18,912, Processing Time 0.052 seconds

A Lower Bound Estimation on the Number of Micro-Registers in Time-Multiplexed FPGA Synthesis (시분할 FPGA 합성에서 마이크로 레지스터 개수에 대한 하한 추정 기법)

  • 엄성용
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.9
    • /
    • pp.512-522
    • /
    • 2003
  • For a time-multiplexed FPGA, a circuit is partitioned into several subcircuits, so that they temporally share the same physical FPGA device by hardware reconfiguration. In these architectures, all the hardware reconfiguration information called contexts are generated and downloaded into the chip, and then the pre-scheduled context switches occur properly and timely. Typically, the size of the chip required to implement the circuit depends on both the maximum number of the LUT blocks required to implement the function of each subcircuit and the maximum number of micro-registers to store results over context switches in the same time. Therefore, many partitioning or synthesis methods try to minimize these two factors. In this paper, we present a new estimation technique to find the lower bound on the number of micro-registers which can be obtained by any synthesis methods, respectively, without performing any actual synthesis and/or design space exploration. The lower bound estimation is very important in sense that it greatly helps to evaluate the results of the previous work and even the future work. If the estimated lower bound exactly matches the actual number in the actual design result, we can say that the result is guaranteed to be optimal. In contrast, if they do not match, the following two cases are expected: we might estimate a better (more exact) lower bound or we find a new synthesis result better than those of the previous work. Our experimental results show that there are some differences between the numbers of micro-registers and our estimated lower bounds. One reason for these differences seems that our estimation tries to estimate the result with the minimum micro-registers among all the possible candidates, regardless of usage of other resources such as LUTs, while the previous work takes into account both LUTs and micro-registers. In addition, it implies that our method may have some limitation on exact estimation due to the complexity of the problem itself in sense that it is much more complicated than LUT estimation and thus needs more improvement, and/or there may exist some other synthesis results better than those of the previous work.

Determinants of Mobile Application Use: A Study Focused on the Correlation between Application Categories (모바일 앱 사용에 영향을 미치는 요인에 관한 연구: 앱 카테고리 간 상관관계를 중심으로)

  • Park, Sangkyu;Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.157-176
    • /
    • 2016
  • For a long time, mobile phone had a sole function of communication. Recently however, abrupt innovations in technology allowed extension of the sphere in mobile phone activities. Development of technology enabled realization of almost computer-like environment even on a very small device. Such advancement yielded several forms of new high-tech devices such as smartphone and tablet PC, which quickly proliferated. Simultaneously with the diffusion of the mobile devices, mobile applications for those devices also prospered and soon became deeply penetrated in consumers' daily lives. Numerous mobile applications have been released in app stores yielding trillions of cumulative downloads. However, a big majority of the applications are disregarded from consumers. Even after the applications are purchased, they do not survive long in consumers' mobile devices and are soon abandoned. Nevertheless, it is imperative for both app developers and app-store operators to understand consumer behaviors and to develop marketing strategies aiming to make sustainable business by first increasing sales of mobile applications and by also designing surviving strategy for applications. Therefore, this research analyzes consumers' mobile application usage behavior in a frame of substitution/supplementary of application categories and several explanatory variables. Considering that consumers of mobile devices use multiple apps simultaneously, this research adopts multivariate probit models to explain mobile application usage behavior and to derive correlation between categories of applications for observing substitution/supplementary of application use. The research adopts several explanatory variables including sociodemographic data, user experiences of purchased applications that reflect future purchasing behavior of paid applications as well as consumer attitudes toward marketing efforts, variables representing consumer attitudes toward rating of the app and those representing consumer attitudes toward app-store promotion efforts (i.e., top developer badge and editor's choice badge). Results of this study can be explained in hedonic and utilitarian framework. Consumers who use hedonic applications, such as those of game and entertainment-related, are of young age with low education level. However, consumers who are old and have received higher education level prefer utilitarian application category such as life, information etc. There are disputable arguments over whether the users of SNS are hedonic or utilitarian. In our results, consumers who are younger and those with higher education level prefer using SNS category applications, which is in a middle of utilitarian and hedonic results. Also, applications that are directly related to tangible assets, such as banking, stock and mobile shopping, are only negatively related to experience of purchasing of paid app, meaning that consumers who put weights on tangible assets do not prefer buying paid application. Regarding categories, most correlations among categories are significantly positive. This is because someone who spend more time on mobile devices tends to use more applications. Game and entertainment category shows significant and positive correlation; however, there exists significantly negative correlation between game and information, as well as game and e-commerce categories of applications. Meanwhile, categories of game and SNS as well as game and finance have shown no significant correlations. This result clearly shows that mobile application usage behavior is quite clearly distinguishable - that the purpose of using mobile devices are polarized into utilitarian and hedonic purpose. This research proves several arguments that can only be explained by second-hand real data, not by survey data, and offers behavioral explanations of mobile application usage in consumers' perspectives. This research also shows substitution/supplementary patterns of consumer application usage, which then explain consumers' mobile application usage behaviors. However, this research has limitations in some points. Classification of categories itself is disputable, for classification is diverged among several studies. Therefore, there is a possibility of change in results depending on the classification. Lastly, although the data are collected in an individual application level, we reduce its observation into an individual level. Further research will be done to resolve these limitations.

The Suitable Region and Site for 'Fuji' Apple Under the Projected Climate in South Korea (미래 시나리오 기후조건하에서의 사과 '후지' 품종 재배적지 탐색)

  • Kim, Soo-Ock;Chung, U-Ran;Kim, Seung-Heui;Choi, In-Myung;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.162-173
    • /
    • 2009
  • Information on the expected geographical shift of suitable zones for growing crops under future climate is a starting point of adaptation planning in agriculture and is attracting much concern from policy makers as well as researchers. Few practical schemes have been developed, however, because of the difficulty in implementing the site-selection concept at an analytical level. In this study, we suggest site-selection criteria for quality Fuji apple production and integrate geospatial data and information available in public domains (e.g., digital elevation model, digital soil maps, digital climate maps, and predictive models for agroclimate and fruit quality) to implement this concept on a GIS platform. Primary criterion for selecting sites suitable for Fuji apple production includes land cover, topography, and soil texture. When the primary criterion is satisfied, climatic conditions such as the length of frost free season, freezing risk during the overwintering period, and the late frost risk in spring are tested as the secondary criterion. Finally, the third criterion checks for fruit quality such as color and shape. Land attributes related to these factors in each criterion were implemented in ArcGIS environment as relevant raster layers for spatial analysis, and retrieval procedures were automated by writing programs compatible with ArcGIS. This scheme was applied to the A1B projected climates for South Korea in the future normal years (2011-2040, 2041-2070, and 2071-2100) as well as the current climate condition observed in 1971-2000 for selecting the sites suitable for quality Fuji apple production in each period. Results showed that this scheme can figure out the geographical shift of suitable zones at landscape scales as well as the latitudinal shift of northern limit for cultivation at national or regional scales.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

A COVID-19 Diagnosis Model based on Various Transformations of Cough Sounds (기침 소리의 다양한 변환을 통한 코로나19 진단 모델)

  • Minkyung Kim;Gunwoo Kim;Keunho Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.57-78
    • /
    • 2023
  • COVID-19, which started in Wuhan, China in November 2019, spread beyond China in 2020 and spread worldwide in March 2020. It is important to prevent a highly contagious virus like COVID-19 in advance and to actively treat it when confirmed, but it is more important to identify the confirmed fact quickly and prevent its spread since it is a virus that spreads quickly. However, PCR test to check for infection is costly and time consuming, and self-kit test is also easy to access, but the cost of the kit is not easy to receive every time. Therefore, if it is possible to determine whether or not a person is positive for COVID-19 based on the sound of a cough so that anyone can use it easily, anyone can easily check whether or not they are confirmed at anytime, anywhere, and it can have great economic advantages. In this study, an experiment was conducted on a method to identify whether or not COVID-19 was confirmed based on a cough sound. Cough sound features were extracted through MFCC, Mel-Spectrogram, and spectral contrast. For the quality of cough sound, noisy data was deleted through SNR, and only the cough sound was extracted from the voice file through chunk. Since the objective is COVID-19 positive and negative classification, learning was performed through XGBoost, LightGBM, and FCNN algorithms, which are often used for classification, and the results were compared. Additionally, we conducted a comparative experiment on the performance of the model using multidimensional vectors obtained by converting cough sounds into both images and vectors. The experimental results showed that the LightGBM model utilizing features obtained by converting basic information about health status and cough sounds into multidimensional vectors through MFCC, Mel-Spectogram, Spectral contrast, and Spectrogram achieved the highest accuracy of 0.74.

Analysis of Tourism Popularity Using T-map Search andSome Trend Data: Focusing on Chuncheon-city, Gangwon-province (T맵 검색지와 썸트랜드 데이터를 이용한 관광인기도분석: 강원도 춘천을 중심으로)

  • TaeWoo Kim;JaeHee Cho
    • Journal of Service Research and Studies
    • /
    • v.12 no.1
    • /
    • pp.25-35
    • /
    • 2022
  • Covid-19, of which the first patient in Korea occurred in January 2020, has affected various fields. Of these, the tourism sector might havebeen hit the hardest. In particular, since tourism-based industrial structure forms the basis of the region, Gangwon-province, and the tourism industry is the main source of income for small businesses and small enterprises, the damage is great. To check the situation and extent of such damage, targeting the Chuncheon region, where public access is the most convenient among the Gangwon regions, one-day tours are possible using public transportation from Seoul and the metropolitan area, with a general image that low expense tourism is recognized as possible, this study conducted empirical analysis through data analysis. For this, the general status of the region was checked based on the visitor data of Chuncheon city provided by the tourist information system, and to check the levels ofinterest in 2019, before Covid-19, and in 2020, after Covid-19, by comparing keywords collected from the web service sometrend of Vibe Company Inc., a company specializing in keyword collection, with SK Telecom's T-map search site data, which in parallel provides in-vehicle navigation service and communication service, this study analyzed the general regional image of Chuncheon-city. In addition, by comparing data from two years by developing a tourism popularity index applying keywords and T-map search site data, this study examined how much the Covid-19 situation affected the level of interest of visitors to the Chuncheon area leading to actual visits using a data analysis approach. According to the results of big data analysis applying the tourism popularity index after designing the data mart, this study confirmed that the effect of the Covid-19 situation on tourism popularity in Chuncheon-city, Gangwon-provincewas not significant, and confirmed the image of tourist destinations based on the regional characteristics of the region. It is hoped that the results of this research and analysis can be used as useful reference data for tourism economic policy making.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

Multi-Dimensional Analysis Method of Product Reviews for Market Insight (마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안)

  • Park, Jeong Hyun;Lee, Seo Ho;Lim, Gyu Jin;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.57-78
    • /
    • 2020
  • With the development of the Internet, consumers have had an opportunity to check product information easily through E-Commerce. Product reviews used in the process of purchasing goods are based on user experience, allowing consumers to engage as producers of information as well as refer to information. This can be a way to increase the efficiency of purchasing decisions from the perspective of consumers, and from the seller's point of view, it can help develop products and strengthen their competitiveness. However, it takes a lot of time and effort to understand the overall assessment and assessment dimensions of the products that I think are important in reading the vast amount of product reviews offered by E-Commerce for the products consumers want to compare. This is because product reviews are unstructured information and it is difficult to read sentiment of reviews and assessment dimension immediately. For example, consumers who want to purchase a laptop would like to check the assessment of comparative products at each dimension, such as performance, weight, delivery, speed, and design. Therefore, in this paper, we would like to propose a method to automatically generate multi-dimensional product assessment scores in product reviews that we would like to compare. The methods presented in this study consist largely of two phases. One is the pre-preparation phase and the second is the individual product scoring phase. In the pre-preparation phase, a dimensioned classification model and a sentiment analysis model are created based on a review of the large category product group review. By combining word embedding and association analysis, the dimensioned classification model complements the limitation that word embedding methods for finding relevance between dimensions and words in existing studies see only the distance of words in sentences. Sentiment analysis models generate CNN models by organizing learning data tagged with positives and negatives on a phrase unit for accurate polarity detection. Through this, the individual product scoring phase applies the models pre-prepared for the phrase unit review. Multi-dimensional assessment scores can be obtained by aggregating them by assessment dimension according to the proportion of reviews organized like this, which are grouped among those that are judged to describe a specific dimension for each phrase. In the experiment of this paper, approximately 260,000 reviews of the large category product group are collected to form a dimensioned classification model and a sentiment analysis model. In addition, reviews of the laptops of S and L companies selling at E-Commerce are collected and used as experimental data, respectively. The dimensioned classification model classified individual product reviews broken down into phrases into six assessment dimensions and combined the existing word embedding method with an association analysis indicating frequency between words and dimensions. As a result of combining word embedding and association analysis, the accuracy of the model increased by 13.7%. The sentiment analysis models could be seen to closely analyze the assessment when they were taught in a phrase unit rather than in sentences. As a result, it was confirmed that the accuracy was 29.4% higher than the sentence-based model. Through this study, both sellers and consumers can expect efficient decision making in purchasing and product development, given that they can make multi-dimensional comparisons of products. In addition, text reviews, which are unstructured data, were transformed into objective values such as frequency and morpheme, and they were analysed together using word embedding and association analysis to improve the objectivity aspects of more precise multi-dimensional analysis and research. This will be an attractive analysis model in terms of not only enabling more effective service deployment during the evolving E-Commerce market and fierce competition, but also satisfying both customers.

Preservation of World Records Heritage in Korea and Further Registry (한국의 세계기록유산 보존 현황 및 과제)

  • Kim, Sung-Soo
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.5 no.2
    • /
    • pp.27-48
    • /
    • 2005
  • This study investigates the current preservation and management of four records and documentary heritage in Korea that is in the UNESCO's Memory of the World Register. The study analyzes their problems and corresponding solutions in digitizing those world records heritages. This study also reviews additional four documentary books in Korea that are in the wish list to add to UNESCO's Memory of the World Register. This study is organized as the following: Chapter 2 examines the value and meanings of world records and documentary heritage in Korea. The registry requirements and procedures of UNESCO's Memory of the World Register are examined. The currently registered records of Korea include Hunmin-Chongum, the Annals of the Choson Dynasty, the Diaries of the Royal Secretariat (Seungjeongwon Ilgi), and Buljo- Jikji-Simche-Yojeol (vol. II). These records heritage's worth and significance are carefully analyzed. For example, Hunmin-Chongum("訓民正音") is consisted of unique and systematic letters. Letters were delicately explained with examples in its original manual at the time of letter's creation, which is an unparalleled case in the world documentary history. The Annals of the Choson Dynasty("朝鮮王朝實錄") are the most comprehensive historic documents that contain the longest period of time in history. Their truthfulness and reliability in describing history give credits to the annals. The Royal Secretariat Diary (called Seungjeongwon-Ilgi("承政院日記")) is the most voluminous primary resources in history, superior to the Annals of Choson Dynasty and Twenty Five Histories in China. Jikji("直指") is the oldest existing book published by movable metal print sets in the world. It evidences the beginning of metal printing in the world printing history and is worthy of being as world heritage. The review of the four registered records confirms that they are valuable world documentary heritage that transfers culture of mankind to next generations and should be preserved carefully and safely without deterioration or loss. Chapter 3 investigates the current status of preservation and management of three repositories that store the four registered records in Korea. The repositories include Kyujanggak Archives in Seoul National University, Pusan Records and Information Center of National Records and Archives Service, and Gansong Art Museum. The quality of their preservation and management are excellent in all of three institutions by the following aspects: 1) detailed security measures are close to perfection 2) archiving practices are very careful by using a special stack room in steady temperature and humidity and depositing it in stack or archival box made of paulownia tree and 3) fire prevention, lighting, and fumigation are thoroughly prepared. Chapter 4 summarizes the status quo of digitization projects of records heritage in Korea. The most important issue related to digitization and database construction on Korean records heritage is likely to set up the standardization of digitization processes and facilities. It is urgently necessary to develop comprehensive standard systems for digitization. Two institutions are closely interested in these tasks: 1) the National Records and Archives Service experienced in developing government records management systems; and 2) the Cultural Heritage Administration interested in digitization of Korean old documents. In collaboration of these two institutions, a new standard system will be designed for digitizing records heritage on Korean Studies. Chapter 5 deals with additional Korean records heritage in the wish list for UNESCO's Memory of the World Register, including: 1) Wooden Printing Blocks(經板) of Koryo-Taejangkyong(高麗大藏經) in Haein Temple(海印寺); 2) Dongui-Bogam("東醫寶鑑") 3) Samguk-Yusa("三國遺事") and 4) Mugujeonggwangdaedaranigyeong. Their world value and importance are examined as followings. Wooden Printing Blocks of Koryo-Taejangkyong in Haein Temple is the worldly oldest wooden printing block of cannon of Buddhism that still exist and was created over 750 years ago. It needs a special conservation treatment to disinfect germs residing in surface and inside of wooden plates. Otherwise, it may be damaged seriously. For its effective conservation and preservation, we hope that UNESCO and Government will schedule special care and budget and join the list of Memory of the Word Register. Dongui-Bogam is the most comprehensive and well-written medical book in the Korean history, summarizing all medical books in Korea and China from the Ancient Times through the early 17th century and concentrating on Korean herb medicine and prescriptions. It is proved as the best clinical guidebook in the 17th century for doctors and practitioners to easily use. The book was also published in China and Japan in the 18th century and greatly influenced the development of practical clinic and medical research in Asia at that time. This is why Dongui Bogam is in the wish list to register to the Memory of the World. Samguk-Yusa is evaluated as one of the most comprehensive history books and treasure sources in Korea, which illustrates foundations of Korean people and covers histories and cultures of ancient Korean peninsula and nearby countries. The book contains the oldest fixed form verse, called Hyang-Ka(鄕歌), and became the origin of Korean literature. In particular, the section of Gi-ee(紀異篇) describes the historical processes of dynasty transition from the first dynasty Gochosun(古朝鮮) to Goguryeo(高句麗) and illustrates the identity of Korean people from its historical origin. This book is worthy of adding to the Memory of the World Register. Mugujeonggwangdaedaranigyeong is the oldest book printed by wooden type plates, and it is estimated to print in between 706 and 751. It contains several reasons and evidence to be worthy of adding to the list of the Memory of the World. It is the greatest documentary heritage that represents the first wooden printing book that still exists in the world as well as illustrates the history of wooden printing in Korea.

ICT Medical Service Provider's Knowledge and level of recognizing how to cope with fire fighting safety (ICT 의료시설 기반에서 종사자의 소방안전 지식과 대처방법 인식수준)

  • Kim, Ja-Sook;Kim, Ja-Ok;Ahn, Young-Joon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.51-60
    • /
    • 2014
  • In this study, ICT medical service provider's level of knowledge fire fighting safety and methods on coping with fires in the regions of Gwangju and Jeonam Province of Korea were investigated to determine the elements affecting such levels and provide basic information on the manuals for educating how to cope with the fire fighting safety in medical facilities. The data were analyzed using SPSS Win 14.0. The scores of level of knowledge fire fighting safety of ICT medical service provider's were 7.06(10 point scale), and the scores of level of recognizing how to cope with fire fighting safety were 6.61(11 point scale). level of recognizing how to cope with fire fighting safety were significantly different according to gender(t=4.12, p<.001), age(${\chi}^2$=17.24, p<.001), length of career(${\chi}^2$=22.76, p<.001), experience with fire fighting safety education(t=6.10, p<.001), level of subjective knowledge on fire fighting safety(${\chi}^2$=53.83, p<.001). In order to enhance the level of understanding of fire fighting safety and methods of coping by the ICT medical service providers it is found that: self-directed learning through avoiding the education just conveying knowledge by lecture tailored learning for individuals fire fighting education focused on experiencing actual work by developing various contents emphasizing cooperative learning deploying patients by classification systems using simulations and a study on the implementation of digital anti-fire monitoring system with multipoint communication protocol, a design and development of the smoke detection system using infra-red laser for fire detection in the wide space, video based fire detection algorithm using gaussian mixture mode developing an education manual for coping with fire fighting safety through multi learning approach at the medical facilities are required.