최근 인터넷의 보편화와 정보통신 기술의 발달로 인해 인터넷을 통한 정보검색이 일상화 됨에 따라 주식에 관한 정보 역시 검색엔진, 소셜네트워크서비스, 인터넷 커뮤니티 등을 통해 획득하는 경우가 잦아졌다. 특정 단어에 대한 키워드 검색량은 사용자의 관심도를 반영하기 때문에 다양한 연구에서 개별 기업에 대한 인터넷 검색량은 투자자의 관심도에 대한 척도로서의 사용가능성을 각광받았다. 특정 주식에 대한 투자자의 관심이 증가할 때 일시적으로 주가가 상승하였다가 회복하는 반전현상은 여러 연구를 통해 검증되어 왔지만 그 동안 투자자의 관심도는 주로 주식거래량, 광고 비용 등을 사용해 간접적으로 측정되었다. 본 연구에서는 국내 코스닥 시장에 상장된 기업에 대한 인터넷 검색량을 투자자의 관심의 척도로 사용하여 투자자의 관심에 근거한 주가변동성의 변화를 전체 시장 측면과 산업별 측면에서 관찰한다. 또한 투자자 관심이 야기한 가격압박에 의한 주가 반전현상의 존재를 코스닥 시장에서 검증하고 산업 간의 반전정도의 차이를 비교한다. 실증분석 결과 비정상적인 인터넷 검색량 증가는 주가변동성의 유의적인 증가를 가져왔고 이러한 현상은 IT S/W, 건설, 유통 산업군에서 특히 강하게 나타났다. 비정상적인 인터넷 검색량의 증가 이후 2주 간 주가변동성이 증가하였고 3~4주 후에는 오히려 변동성이 감소하는 것을 확인하였다. 이러한 주가 반전현상 역시 IT S/W, 건설, 유통 산업군에서 보다 극단적으로 발생하는 것으로 나타난다.
최근 딥 러닝 기술의 발전으로 뉴스, 블로그 등 다양한 문서에 포함된 텍스트 분석에 딥 러닝 기술을 활용하는 연구가 활발하게 수행되고 있다. 다양한 텍스트 분석 응용 가운데, 텍스트 분류는 학계와 업계에서 가장 많이 활용되는 대표적인 기술이다. 텍스트 분류의 활용 예로는 정답 레이블이 하나만 존재하는 이진 클래스 분류와 다중 클래스 분류, 그리고 정답 레이블이 여러 개 존재하는 다중 레이블 분류 등이 있다. 특히, 다중 레이블 분류는 여러 개의 정답 레이블이 존재한다는 특성 때문에 일반적인 분류와는 상이한 학습 방법이 요구된다. 또한, 다중 레이블 분류 문제는 레이블과 클래스의 개수가 증가할수록 예측의 난이도가 상승한다는 측면에서 데이터 과학 분야의 난제로 여겨지고 있다. 따라서 이를 해결하기 위해 다수의 레이블을 압축한 후 압축된 레이블을 예측하고, 예측된 압축 레이블을 원래 레이블로 복원하는 레이블 임베딩이 많이 활용되고 있다. 대표적으로 딥 러닝 모델인 오토인코더 기반 레이블 임베딩이 이러한 목적으로 사용되고 있지만, 이러한 기법은 클래스의 수가 무수히 많은 고차원 레이블 공간을 저차원 잠재 레이블 공간으로 압축할 때 많은 정보 손실을 야기한다는 한계가 있다. 이에 본 연구에서는 오토인코더의 인코더와 디코더 각각에 스킵 연결을 추가하여, 고차원 레이블 공간의 압축 과정에서 정보 손실을 최소화할 수 있는 레이블 임베딩 방법을 제안한다. 또한 학술연구정보서비스인 'RISS'에서 수집한 학술논문 4,675건에 대해 각 논문의 초록으로부터 해당 논문의 다중 키워드를 예측하는 실험을 수행한 결과, 제안 방법론이 기존의 일반 오토인코더 기반 레이블 임베딩 기법에 비해 정확도, 정밀도, 재현율, 그리고 F1 점수 등 모든 측면에서 우수한 성능을 나타냄을 확인하였다.
최근의 '똑똑한 소비자(Smart Consumer)'라 불리는 소비자가 많아지고 있는데, 이들은 제조사나 광고를 통해 전달되는 정보에 의존하지 않고, 기존 사용자나 전문가들의 후기, 여러 과학 지식을 획득하여 제품에 대한 이해를 높이고, 본인 스스로가 직접 판단하여 구매하고 있다. 특히나 화장품 분야는 인체 유해성과 같은 부정적인 요소에 대한 민감도가 높고, 자신의 고유한 피부 특성과의 조화도 고려되어야 하기 때문에, 전문적인 지식과 타인의 경험, 본인의 과거 경험 등을 종합적으로 생각하여 구매 의사결정을 내려야 하고, 이에 대해서 적극적인 소비자가 많아지고 있다. 이러한 움직임은 '셀프 뷰티' 와 같은 '셀프' 문화의 열풍과 함께, 문화 현상인 '그루밍족'의 등장, 사회적 트렌드인 'K-뷰티' 와도 동행한다고 할 수 있다. 맞춤형 화장품에 대한 관심의 급부상도 이러한 현상 중 하나라 볼 수 있다. 소비자들의 맞춤형 화장품의 니즈를 충족시키기 위해, 화장품 제조사나 관련 기업들은 ICT기술과의 융합을 통하여 프리미엄 서비스를 중심으로 소비자의 니즈에 대응하고 있다. 그러나 기업 및 시장 현황이 맞춤형 화장품을 향해 진화하고 있지만, 소비자의 피부 상태, 추구하는 감성, 실제 제품이나 서비스까지 소비자 경험을 전체적으로 완전하게 다루는 지능형 데이터 플랫폼은 부재한다. 본 연구에서는 소비자 경험에 대한 지능형 데이터 플랫폼 구축을 위한 첫 단계로 소비자 언어 기반의 화장품 감성 분석을 수행하였다. 소비자들 개인의 선호나 취향이 분명한 앰플/세럼 카테고리를 중심으로 매출 순위 1위에서 99위까지의 99개 제품을 선정하여, 블로그와 트위터 등의 SNS 상에 언급되는 후기 내에 화장품 경험에 대한 소비자 감성을 수집하였다. 총 357개의 감성 형용사를 수집하였고, 고객 여정 워크샵을 통해 유사 감성을 합치고, 중복 감성을 통합하는 작업을 수행하였으며, 최종 76개 형용사를 구축했다. 구축한 형용사에 대한 SOM 분석을 통해 화장품에 대한 소비자 감성에 대한 클러스터링을 실시했다. 분석 결과, 총 8개의 클러스터를 도출했고, 클러스터 별 각 노드의 벡터 값을 기준으로 소비자 감성 Top 10을 도출했다. 소비자 감성을 기준으로 클러스터별 소비자 감성에 서로 다른 특징이 발견됐으며, 소비자에 따라 다른 소비자의 감성을 선호, 기존과는 다른 소비자 감성을 고려한 추천 및 분류 체계가 필요함을 확인했다. 연구 결과를 통해 감성 분석의 활용 도메인이 화장품만이 아닌 다양한 영역으로 확장될 수 있음 확인했으며, 감성 분석을 통한 소비자 인사이트를 도출할 수 있다는 점을 시사했다. 또한, 본 연구에서 활용한 디자인 씽킹(Design Thinking)의 방법론의 적용하여 화장품 특화된 감성 사전을 과학적인 프로세스로 구축했으며, 화장품에 대한 소비자의 인지 및 심리에 대한 이해를 도울 수 있을 것으로 기대한다.
최근 인간과 상호작용할 수 있는 '소셜로봇'을 활용하여 복잡하고 다양한 사회문제를 해소하고 개인의 삶의 질을 제고하려는 시도가 주목받고 있다. 과거 로봇은 인간을 대신해서 산업 현장에 투입되고 노동력을 제공해주는 존재로 인식되었다. 그러나 오늘날의 로봇은 각종 산업분야를 관통하는 핵심 키워드인 'Smart'의 등장을 기점으로 인간과 함께 공존하며 사회적 교감이 가능한 '소셜로봇(Social Robot)'으로 그 개념이 확장되고 있다. 구체적으로 고객을 응대하는 서비스 로봇, 에듀테인먼트(Edutainment) 성격의 로봇, 그리고 인간과의 교감, 상호작용에 주목한 감성로봇 등이 출시되고 있다. 그러나 4차 산업혁명을 계기로 ICT 서비스 환경이 급격한 발전을 이룬 현재까지 소셜로봇의 대중화는 체감되지 않고 있다. 소셜로봇의 핵심 기능이 사용자와의 사회적 교감임을 고려하면, 소셜로봇의 대중화를 촉진하기 위해서는 기기에 적용되는 기술 이외의 요소들도 중요하게 고려할 필요가 있다. 본 연구는 로봇의 디자인 요소가 소셜로봇에 대한 소비자들의 구매를 이끌어내는데 중요하게 작용할 것으로 판단한다. 로봇의 외형이 유발하는 감성은 사용자의 인지, 추론, 평가와 기대를 형성하는 과정에서 중요한 영향을 미치며 나아가 로봇에 대한 태도와 호감 그리고 성능 추론 등에도 영향을 줄 수 있다. 그러나 소셜로봇에 대한 기존 연구들은 로봇의 개발방법론을 제안하거나, 소셜로봇이 사용자에게 제공하는 효과를 단편적으로 검증하는 수준에 머무르고 있다. 따라서 본 연구는 소셜로봇의 외형으로부터 사용자가 느끼는 감성이 소셜로봇에 대한 사용자의 태도에 미치는 영향을 검증해보고자 한다. 이때 서로 다른 출처의 이종 데이터 간 결합을 통하여 소셜로봇 디자인평가 모형을 구성한다. 구체적으로 소셜로봇의 외형에 대하여 사전에 구축된 ABOT Database로부터 다수의 소셜로봇에 대한 세 가지 정량적 지표 데이터를 확보하였다. 소셜로봇의 디자인 감성은 (1) 기존의 디자인평가 문헌과 (2) 소셜로봇 제품 후기와 블로그 등의 온라인 구전, (3) 소셜로봇 디자인에 대한 정성적인 인터뷰를 통해 도출하였다. 이후 사용자 설문을 통하여 각각의 소셜로봇에 대해 사용자가 느끼는 감성과 태도에 대한 평가를 수집하였다. 세부적인 감성 평가항목 23개에 대하여, 차원 축소 방법론을 통해 6개의 감성 차원을 도출하였다. 이어서 도출된 감성 차원들이 사용자의 소셜로봇에 대한 태도에 미치는 영향을 검증하기 위해 회귀분석을 수행하여 감성과 태도 간의 관계를 파악해 보았다. 마지막으로 정량적으로 수집된 소셜로봇의 외형에 대한 지표가 감성과 태도 간의 관계에 영향을 줄 수 있음을 검증하기 위해 조절회귀분석을 수행하였다. 기술적인ABOT Database 속성 지표들과 감성 차원들 간의 순수조절효과를 확인하고, 도출된 조절효과에 대한 시각화를 수행하여 외형, 감성, 그리고 태도 간의 관계를 다각적인 관점에서 해석하였다. 본 연구는 이종간 데이터를 연결하여 소셜로봇의 기술적 속성과 소비자 감성, 태도까지 변수 간 관계를 총체적으로 실증 분석했다는 점에서 이론적 공헌을 가지며, 소셜로봇 디자인 개발 전략에 대한 의사결정을 지원하기 위한 기준으로 소비자 감성의 활용 가능성을 제안하였다는 실무적 의의를 가진다.
협업을 촉진할 수 있는 환경과 시스템을 갖추는 것은 기업경쟁력 확보에 중요한 요인으로 인식되고 있다. 협업이란 여러 사람이 협동적이고 조직적으로 일하며, 공동의 목표 혹은 가치를 추구하여 정보와 프로세스를 공유함으로써 노동 생산성을 향상시키는 상호작용을 의미한다. 협업을 촉진시키는 요인에는 비전 공유, 비전을 반영한 조직의 원칙 및 규칙, 온라인 시스템 구축, 의사소통 등이 있다. 첫째, 비전을 구체화 할수록 조직원의 적극적이고 자발적인 참여가 이루어질 수 있다. 둘째, 구성원이 수용하는 규칙이나 원칙이 단합과 좋은 성과로 이어지게 된다. 또한 능력에 맞는 업무 분담과 자기 계발을 위한 활동이 업무로 이어지고 정기적인 팀 활동을 만들어 협업 환경 및 분위기를 조성하는데 도움이 된다. 셋째, 체계적인 온라인 협업 시스템의 구축으로 효율적이고 신속한 업무가 이루어진다. 기업들은 클라우드 서비스와 소셜미디어를 활용하여 업무의 저비용과 고효율을 이룰 수 있었으며, 이때 구성원들의 적극적 활용과 참여를 유도하는 지속적 교육이 반드시 수반되어야 한다. 넷째, 기업을 알리고 조직 내 외부 사람들과 적극적으로 소통하는 활동은 기업의 이미지를 바꾸고, 기업 성과를 창출해 내는 기반이 된다. 본 연구의 목적은 글로벌 사업진출과정에 발생하는 문제해결 방안으로 산학협력 협업촉진모델을 제안하는데 있다. 이를 위하여 기업조직에서 협업이 잘 이루어지기 위한 촉진요인을 전략적 연동 모형(strategic alignment model)을 기반으로 협업을 이해하고, 스마트워크 도구를 활용하는 팀 사례분석을 통한 성공요인을 도출한다. 연구결과 체계적인 협업촉진모델을 만들기 위하여 조직 구성 단계에 맞는 역할들을 도출하였다. 첫째, 리더는 확고하고 명확한 비전을 만들어 조직구성원에게 전파하여 공감과 믿음 그리고 소속감을 가지도록 하여야 한다. 둘째, 중간관리자를 포함한 리더는 조직의 비전을 팀원간에 전파하기 위해 규칙과 원칙을 만들고, 시스템을 구축하고 효율적으로 사용할 수 있도록 관리하여야 한다. 셋째, 팀원은 기업의 비전을 내재화하여 역할에 책임을 다할 뿐만 아니라 외부로 기업을 알리는 역할에 충실해야 한다. 연구결과는 향후 실증 연구를 위한 기반을 제시할 것으로 기대된다.
본 연구에서는 한국문화관광연구원에서 조사된 "2013년~2015년 외래 관광객 실태조사"의 약 36,000개 데이터에 대한 빅 데이터 분석을 통해 관광산업 활성화 방안을 도출해 보고자 한다. 이를 위해서 외래 관광객들의 '전반적 만족도', '재방문 의사', '추천의사' 변수에 가장 많은 영향을 끼치는 요인을 분석하고 해당 요인들의 각각에 대한 영향력에 대해 파악 하였다. 본 연구에서는 SPSS IBM Modeler 16.0의 의사결정나무(C5.0, CART, CHAID, QUEST), 인공신경망, 로지스틱 회귀분석의 데이터마이닝 기법을 이용하여 종속변수에 가장 큰 영향을 미치는 상위 변수 7개씩을 각각 도출하였고, 추가적으로 각 독립변수들의 영향력을 심도 있게 파악하기 위하여 R프로그래밍을 활용하여 SPSS IBM Modeler 16.0을 통해 도출된 각 독립변수들의 영향력을 파악하였다. 데이터 분석 결과 '전반적 만족도'에 가장 영향을 미치는 상위 변수 7개는 관광지매력도, 음식만족도, 숙박만족도, 교통수단만족도, 안내서비스만족도, 방문관광지수, 국가로 나타났으며 가장 큰 영향력을 미친 변수는 음식만족도와 관광지매력도로 분석되었다. '재방문 의사'에 가장 영향을 미치는 상위 변수 7개로는 국가, 여행 동기, 활동, 음식만족도, 제일 좋았던 활동, 관광안내서비스만족도, 관광지매력도로 나타났으며 그중 가장 큰 영향력을 미친 변수는 음식만족도와 여행 동기로 분석되었다. 마지막으로 '추천의사'에 영향을 미치는 상위 변수 7개로는 국가, 관광지매력도, 방문관광지수, 음식만족도, 활동, 관광안내서비스만족도, 비용으로 나타났으며 가장 큰 영향력을 미친 변수는 국가, 관광지매력도, 음식만족도로 분석되었다. 따라서 세 변수에 공통적으로 영향을 끼치는 요인은 음식만족도, 관광지매력도로 분석되었으며 해당 요인들이 공통적으로 한국여행에 대한 전반적 만족도와 재방문 의사, 추천의사에 미치는 영향이 크다는 것을 확인할 수 있었다. 본 연구는 외래 관광객들의 한국관광에 대한 활성화 방안을 "외래 관광객 실태조사" 빅 데이터 분석을 통해 규명함으로써 한국 관광 데이터 분석의 활용과 관광 정책 수립의 기초자료로 활용될 수 있을 것으로 기대되며 향후 기업 및 국가차원에서 한국 관광발전에 기여할 수 있는 활성화 방안을 마련하는 자료로 사용될 수 있을 것으로 기대한다.
SaaS는 사용자가 필요한 소프트웨어를 인터넷을 통해 원격으로 서비스 받을 수 있도록 하는 모델로 소프트웨어 시장에서 차지하는 비중이 커짐과 동시에 관련 분야의 비즈니스 요구사항의 증가에 따라 지속적인 성장이 기대되는 분야이다. 이에 본 연구는 SaaS 공급업체들을 대상으로 기업에서 추구하는 차별화 전략 및 낮은 가격전략과 고객획득성과와의 관계를 살펴보고 더 나아가 이들 간의 관계에서 SaaS 기술성숙도 수준의 매개효과와 조절효과를 알아보고자 하였다. 이를 위해 SaaS 제공업체 및 국내 CNK(commerce net Korea) 데이터베이스에 등록된 업체의 어플리케이션을 대상으로, 175개 기업 총 199개 SaaS 전략사업단위의 설문결과를 분석에 활용하였다. SaaS 기술성숙도가 차별화전략 및 낮은가격전략과 고객획득성과와의 관계를 매개하는지 검증하기 위해 Baron and Kenny (1986)가 제안한 절차에 따라 회귀분석을 실시하였고, SaaS 기술성숙도의 조절효과를 살펴보기 위해 위계적 회귀분석(hierarchical regression analysis) 방법을 적용한 상호작용효과를 검증하였다. 분석결과, 첫째, SaaS 제공업체가 추구하는 차별화 전략(업종특화, 파트너활용, 전담인력수) 및 낮은 가격전략(월이용료, 초기설치비)과 같은 기업전략은 고객획득에 긍정적인 영향을 미치는 것으로 나타났다. 또한, SaaS 공급업체의 기술성숙도 수준(어플리케이션 서비스 제공, 웹 기본 어플리케이션, 웹 서비스 어플리케이션)과 고객 획득성과 간에 유의미한 긍정적인 관계가 있는 것으로 확인되었다. 마지막으로, SaaS 기술성숙도 수준의 기업전략과 고객획득성과와의 관계에 대한 조절효과는 주로 차별화 전략에 대해 나타난 반면, 매개효과는 주로 낮은 가격전략에 대해 나타남을 확인하였다.
최근 소셜 네트워크 서비스는 소비자와의 관계 마케팅 확산 및 확장을 위한 중요한 채널로 인식되며 많은 관심을 받고 있다. 기업이 온라인 환경에서 성공하기 위해서는 기업과 고객 사이의 관계 구축뿐만 아니라 고객들 간의 관계에 초점을 맞출 필요가 있다. 본 연구에서는 페이스북 팬 페이지에 참여하는 사용자들 사이의 네트워크를 분석하여 기업의 비즈니스 성과에 고객 간 네트워크의 구조적 특성이 미치는 영향을 실증적으로 분석하였다. 이를 위해 네트워크 데이터는 코스피 상장 기업 가운데 페이스북 팬 페이지에 100개 이상의 게시글을 올린 54개 기업으로부터 수집하였으며, 수집된 네트워크 데이터는 각 사용자를 노드로 하고 동일한 마케팅 활동에 대해 참여한 사용자간의 관계를 링크로 한 원모드 비방향 이진 네트워크(one-mode undirected binary network)이다. 본 연구에서는 이러한 네트워크 데이터를 핸들링하여 사용자들 간의 활동 관계를 분석할 수 있는 네트워크 지표(밀도, 글로벌 클러스터링 계수, 최단거리평균, 직경)를 도출하였으며, 이러한 고객 간 네트워크의 구조적 특징을 파악할 수 있는 지표와 기업의 과거실적(순이익), 그리고 미래 예측성과(토빈의 Q) 간의 관계를 분석하였다. 본 연구는 학문적 관점에서 소셜 미디어 채널을 비즈니스 관점에서 연구하려는 연구자들에게 소셜네트워크분석 방법을 통한 새로운 접근법을 제시한다. 실무적인 관점에서 본 연구는 소셜미디어를 통해 마케팅 활동을 수행하려는 기업의 관리자들에게 네트워크의 지표를 이용한 지능형 마케팅 서비스를 수행할 수 있는 토대를 제공할 것으로 기대한다.
모바일뱅킹의 성장세 뚜렷한 가능성에 따라 이와 관련한 연구들이 다수 진행되고 있으나, 국내의 경우 기술적인 요소나 소비자의 이용 의도 및 행동, 만족에 대한 분석으로 집중되어 있는 실정이다. 또한 20대라는 견고한 고객층을 보유하였음에도 이러한 고객 집단을 특정하여 진행된 연구는 거의 찾아볼 수 없다. 모바일뱅킹이 한 단계 도약하기 위해서는 그 자체에 대한 연구뿐만 아니라 모바일뱅킹에 영향을 미치는 외부요인에 대한 연구를 통해 다양한 관점을 확보하는 전략이 필요하다. 따라서 본 연구는 20대의 모바일뱅킹에 유의미한 영향을 미칠 수 있는 다양한 외부요인 중 충동성, 신용카드사용 여부, SNS 중독을 분석하였다. 충동성의 네 가지 하위요인인 부정긴급성, 긍정긴급성, 계획성부족, 지속성부족과 모바일뱅킹 사용률 간의 관계를 검토하고, 여기에 신용카드 사용 여부가 영향을 미치는지 확인하였다. 또한 충동성의 각 하위요인과 SNS 중독의 세 가지 하위요인인 조절실패 및 일상생활장애, 몰입 및 내성, 부정정서회피 간의 관계를 탐색하였다. 이때 모바일 기반의 SNS 중독이 충동성과 모바일뱅킹 사용률 간의 관계에서 어떠한 매개효과를 보이는지 확인하였다. 이러한 분석을 위해 20대 남녀 150명을 대상으로 설문조사를 진행하였고, 수집된 자료는 SPSS Statistics 25 프로그램을 이용하여 연구문제에 따라 상관분석, 회귀분석 등을 실시하였다. 연구결과는 다음과 같다. 첫째, 긍정긴급성은 모바일뱅킹 사용률에 유의한 정적 영향을 미치는 것으로 나타났다. 둘째, 신용카드 사용 여부는 부정긴급성과 모바일뱅킹 사용률의 관계에서 조절효과를 보였다. 셋째, 충동성의 하위요인은 모두 SNS 중독의 하위요인과 유의미한 정적 관계가 있는 것으로 나타났다. 넷째, 긍정긴급성 및 SNS 중독, 모바일뱅킹 사용률의 관계에서 총효과와 직접효과가 나타나는 것으로 확인되었다.
최근 지식기반 사회의 진입과 더불어 지식재산에 대한 관심이 증가하고 있다. 특히 하이테크산업을 이끌고 있는 ICT기업들은 지식재산의 체계적 관리를 위하여 끊임없이 노력하고 있다. 기업의 지적 자본을 대표하는 특허정보가 지속적으로 축적됨에 따라 정량적인 분석이 가능해졌다. 특허정보를 통하여 특허수준부터 기업수준, 산업수준, 국가수준에 이르기 까지 다양한 수준에서의 분석이 가능하다. 특허정보는 기술 현황을 파악하거나 성과에 미치는 영향을 분석하는데 활용되고 있다. 네트워크를 통한 분석은 지식 영향의 흐름을 나타내며, 이를 통하여 기술의 변화를 확인할 수 있을 뿐만 아니라 앞으로의 연구 방향을 예측할 수 있다. 네트워크를 활용한 분석 분야에서는 기업이 차지하는 네트워크상에서의 위치가 기업성과에 미치는 영향을 다각도에서 분석하는 연구가 진행되고 있다. 특허 인용 정보를 활용한 분석은 크게 두 가지로, 인용 횟수를 활용하는 인용지표 분석과 인용관계를 바탕으로 한 네트워크 분석으로 나뉜다. 본 연구는 기업간 규모의 차이가 기업 간 특허 인용 관계에 미치는 영향을 분석하고자 하였다. S&P 500에 등록된 IT 및 통신서비스를 제공하는 74개 기업을 선정하였으며 기업 간 특허 인용 관계를 구하기 위하여 2009년, 2010년의 특허 인용 정보를 수집하여 기업 간 특허 인용 관계를 나타냈다. 또한 기업규모를 대표하는 지표로 기업 총 자산에 대한 정보를 수집하였다. 기업규모에 따라 외부 지식에 대한 의존도가 달라지는 선행연구를 통하여 기업규모가 기업간 특허 인용 관계에 미치는 영향을 알아보고자 하였다. 이에 기업 간 총 자산의 차이에 절대값을 취한 값을 기업 간 거리로 정의하였으며, 기업 간 규모의 단순 차이를 기업 간 계층으로 정의하여 새로운 소시오매트릭스를 생성하였다. 2010년도 기업간 특허 인용 관계를 나타낸 소시오매트릭스를 종속변수로 하였으며, 2009년도 기업 간 특허 인용 네트워크, 기업 간 거리 및 계층을 독립변수로 하여 QAP분석 및 MR-QAP분석을 실시하였다. QAP분석 결과 기업 간 거리와 계층은 특허 인용 관계에 유의한 영향을 미치는 것으로 나타났다. MR-QAP분석에는 2009년도 기업 간 특허 인용 관계와 기업 간 거리만 유의함을 확인할 수 있었다. 특히 2009년도 기업 간 특허 인용 관계가 2010년도 기업 간 특허 인용 관계에 가장 큰 영향력을 행사하는 것을 볼 수 있어 기업 간 특허 인용관계는 연속성이 존재하는 것으로 볼 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.