• Title/Summary/Keyword: 정보모델

검색결과 23,596건 처리시간 0.052초

'질문-단락'간 주의 집중을 이용한 검색 모델 재순위화 방법 (Retrieval Model Re-ranking Method using 'Question-Passage' Attention)

  • 장영진;김학수;지혜성;이충희
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.411-414
    • /
    • 2019
  • 검색 모델은 색인된 문서 내에서 입력과 유사한 문서를 검색하는 시스템이다. 최근에는 기계독해 모델과 통합하여 질문에 대한 답을 검색 모델의 결과에서 찾는 연구가 진행되고 있다. 위의 통합 모델이 좋은 결과를 내기 위해서는 검색 모델의 높은 성능이 요구된다. 따라서 본 논문에서는 검색 모델의 성능을 보완해 줄 수 있는 재순위화 모델을 제안한다. 검색 모델의 결과 후보를 일괄적으로 입력받고 '질문-단락'간 주의 집중을 계산하여 재순위화 한다. 실험 결과 P@1 기준으로 기존 검색 모델 성능대비 5.58%의 성능 향상을 보였다.

  • PDF

의미적 정보를 보존하는 지식 증류에 대한 연구 (A study on knowledge distillation to preserve semantic information)

  • 박성현;이상근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.772-773
    • /
    • 2024
  • 의미적 정보까지 학생 모델에게 학습시키기 위한 지식 증류 기법은 많이 논의되어 왔다. 그러나 학생 모델의 용량이 교사 모델의 용량에 비해 부족함에서 발생하는 의미적 정보 손실에 대한 논의는 아직 진행되지 않았다. 본 논문에서는 의미적 정보의 최소 단위를 교사 모델의 레이어로 설정하여 학생 모델이 지식 증류를 시작하기 전 최적의 지식 증류 대상을 설정하는 최적 은닉층 선정 알고리즘을 제시한다.

자연어 이해 모델의 성능 향상을 위한 교차 게이트 메커니즘 방법 (Cross Gated Mechanism to Improve Natural Language Understanding)

  • 김성주;김원우;설용수;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.165-169
    • /
    • 2019
  • 자연어 이해 모델은 대화 시스템의 핵심적인 구성 요소로서 자연어 문장에 대해 그 의도와 정보를 파악하여 의도(intent)와 슬롯(slot)의 형태로 분석하는 모델이다. 최근 연구에서 의도와 슬롯의 추정을 단일 합동 모델(joint model)을 이용하여 합동 학습(joint training)을 하는 연구들이 진행되고 있다. 합동 모델을 이용한 합동 학습은 의도와 슬롯의 추정 정보가 모델 내에서 암시적으로 교류 되도록 하여 의도와 슬롯 추정 성능이 향상된다. 본 논문에서는 기존 합동 모델이 암시적으로 추정 정보를 교류하는 데서 더 나아가 모델 내의 의도와 슬롯 추정 정보를 명시적으로 교류하도록 모델링하여 의도와 슬롯 추정 성능을 높일 수 있는 교차 게이트 메커니즘(Cross Gated Mechanism)을 제안한다.

  • PDF

이미지 캡션 생성을 위한 심층 신경망 모델 학습과 전이 (Learning and Transferring Deep Neural Network Models for Image Caption Generation)

  • 김동하;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.617-620
    • /
    • 2016
  • 본 논문에서는 이미지 캡션 생성과 모델 전이에 효과적인 심층 신경망 모델을 제시한다. 본 모델은 멀티 모달 순환 신경망 모델의 하나로서, 이미지로부터 시각 정보를 추출하는 컨볼루션 신경망 층, 각 단어를 저차원의 특징으로 변환하는 임베딩 층, 캡션 문장 구조를 학습하는 순환 신경망 층, 시각 정보와 언어 정보를 결합하는 멀티 모달 층 등 총 5 개의 계층들로 구성된다. 특히 본 모델에서는 시퀀스 패턴 학습과 모델 전이에 우수한 LSTM 유닛을 이용하여 순환 신경망 층을 구성하고, 컨볼루션 신경망 층의 출력을 임베딩 층뿐만 아니라 멀티 모달 층에도 연결함으로써, 캡션 문장 생성을 위한 매 단계마다 이미지의 시각 정보를 이용할 수 있는 연결 구조를 가진다. Flickr8k, Flickr30k, MSCOCO 등의 공개 데이터 집합들을 이용한 다양한 비교 실험을 통해, 캡션의 정확도와 모델 전이의 효과 면에서 본 논문에서 제시한 멀티 모달 순환 신경망 모델의 우수성을 입증하였다.

UML Profile 작성시 코드 생성 정보 기술을 위한 메타모델 (A Metamodel For Code Information Of UML Profile)

  • 김우식;정양재;신규상
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.115-117
    • /
    • 2003
  • 2001년 OMG는 그 동안의 모델링 관련 표준화 작업의 성과를 바탕으로 모델 중심의 개발 방법인 MDA를 표준으로 정하였다. MDA의 핵심은 잘 정의된 비즈니스 독립적인 모델을 플랫폼 종속적인 모델로 자동 변환하고 그 변환된 모델을 통해서 코드를 자동 생성함으로써 소프트웨어의 생산성을 높이고 플랫폼 변화에 능동적으로 대처 할 수 있다는 것이다. 본 논문에서는 코드 생성을 위해서 플랫폼 종속적 모델의 기술 방법인 UML Profile에 코드 관련 정보를 UML을 통해서 정의할 수 있도록 하는 코드 생성 정보 메타 모델을 제시한다.

  • PDF

쿼리를 사용하지 않는 딥러닝 모델 탈취 공격 연구 (A Study on Non-query Based Model Extraction Attacks)

  • 조윤기;이영한;전소희;백윤흥
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.219-222
    • /
    • 2021
  • 인공지능 기술은 모든 분야에서 혁신을 이뤄내고 있다. 이와 동시에 인공지능 모델에 대한 여러 보안적인 문제점이 야기되고 있다. 그 중 대표적인 문제는 많은 인적/물적 자원을 통해 개발한 모델을 악의적인 사용자가 탈취하는 것이다. 모델 탈취가 발생할 경우, 경제적인 문제뿐만 아니라 모델 자체의 취약성을 드러낼 수 있다. 현재 많은 연구가 쿼리를 통해 얻는 모델의 입력과 출력을 분석하여 모델의 의사경계면 또는 모델의 기능성을 탈취하고 있다. 하지만 쿼리 기반의 탈취 공격은 획득할 수 있는 정보가 제한적이기 때문에 완벽한 탈취가 어렵다. 이에 따라 딥러닝 모델 연산 과정에서 데이터 스니핑 또는 캐시 부채널 공격을 통해 추가적인 정보 또는 완전한 모델을 탈취하려는 연구가 진행되고 있다. 본 논문에서는 최근 연구 동향과 쿼리 기반 공격과의 차이점을 분석하고 연구한다.

개인정보 수명주기에 따른 개인정보관리모델에 관한 연구

  • 김현철;고재우;최명길
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 International Conference
    • /
    • pp.966-969
    • /
    • 2007
  • 인터넷은 개인과 조직간의 정보를 원활하게 유통시키는 역할을 하고 있지만, 개인정보를 노출시키는 부작용을 낳고 있다. 특히 개인정보의 가치가 중요시되고 있는 상황에서 개인정보를 보호할 수 있는 보호정책이 필요하다. 본 연구는 개인정보의 수집, 저장, 이용, 파기와 같은 수명주기에 따른 개인정보 관리모델을 제시하고자 한다. 개인정보 관리모델은 각 개인정보 수명주기에 따라 개인정보 관리자가 수립해야 할 개인정보보호정책, 개인정보보호를 위한 기술적 대책, 기술적 대책 및 프로세스를 관리할 수 있는 관리적 대책을 서술한다. 본 연구는 제안된 개인정보 관리모델을 구현할 수 있는 개념적인 아키텍처를 제시한다. 본 연구는 개인정보의 수명주기에 따른 개인정보보호를 위해서 필요한 개인정보정책, 기술적인 대책, 관리적인 대책을 제시했다는 데 의의가 있다.

  • PDF

3차원 공간정보 데이터 모델 비교 분석 (Comparative Analysis of 3D Spatial Data Models)

  • 박세호;이지영
    • Spatial Information Research
    • /
    • 제17권3호
    • /
    • pp.277-285
    • /
    • 2009
  • 효율적으로 데이터를 관리, 분석, 유지하기 위해서는 각 시스템의 목적에 맞는 데이터 모델이 필요하다. 데이터 모델에 따라 해당하는 활용 시스템의 활용 범위가 결정되며, 각각의 활용 시스템에 맞는 데이터 모델이 개발되고 있는 상황이다. GIS 분야에서도 각 GIS 응용시스템에 맞는 다양한 공간정보 데이터 모델들이 개발 되었으며, 제공하고자 하는 서비스에 따라 공간정보 데이터 모델이 만들어지고 있다. 어플리케이션의 효율적인 활용을 위해서는 공간정보 데이터의 정확성과 최신성등이 중요하지만 특히 공간정보 데이터 구조를 만드는 데이터 모델링이 중요하다. 그러므로 본 연구는 1)국내외 공간정보 데이터 모델의 공간정보를 표현하는데 있어 기하학적 모델, 위상학적 모델과 3차원 공간정보 가시화 방법 등의 항목별로 비교하고 2)각각의 데이터 구조를 분석하여 데이터 모델의 특징을 비교한다. 마지막으로 3)공간정보 데이터 모델을 선정하여 정량적인 분석을 통해 데이터 구조에 따른 특징을 분석한다.

  • PDF

외부 상황 정보를 활용하는 적응적 대화 모델의 구현 (Developing an Adaptive Dialogue System Using External Information)

  • 장진예;정민영;박한무;신사임
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.456-459
    • /
    • 2019
  • 대화 행위는 단순한 발화 문장들의 교환을 넘어 발화자들의 다양한 주변 정보를 고려한 종합적인 판단의 결과로 볼 수 있다. 본 논문은 여섯 가지 유형의 외부 상황 정보를 기반으로 적응적 발언을 생성하는 딥러닝 기반 대화 모델을 소개한다. 직접 구축한 상황 정보들이 태깅된 대화 데이터를 바탕으로, 외부 상황 정보를 사용자 발화와 더불어 활용하는 다양한 구조의 신경망 구조를 가지는 모델과 더불어 외부 상황 정보를 사용하지 않는 모델과의 성능에 대해 비교한다. 실험 결과들은 대화 모델의 발화 생성에 있어서 상황 정보 활용의 중요성을 보여준다.

  • PDF

스킨 컬러와 변형모델에 기반한 얼굴검출 (Face Detection based on Skin Color and Deformable Model)

  • 김정기;전준철;박구락
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.343-345
    • /
    • 2003
  • 본 논문에서는 색상 정보와 변형 모델을 이용한 얼굴 영역 및 얼굴의 특징 영역의 자동 검출 방법을 제시한다. 영상으로부터 획득할 수 있는 정보 중 가장 빠르고 쉽게 얻을 수 있는 정보가 색상 정보이며, 색상정보는 사물을 판단함에 있어서 가장 효율적이면서 컴퓨터의 계산량을 줄일 수 있다는 장점을 갖고 있기 때문에 얼굴 영역 검출 방법으로 많이 이용되고 있다. 본 연구에서는 얼굴영역 및 얼굴 특성 추출함에 있어 컬러모델 사용 시 외부 조명의 영향을 줄여주는 조명 보정 방법을 제시하고, 조명 보정에 의해 평활화된 YCbCr 색상모델에 적용하여 각 성분 특성을 고려한 얼굴영역 및 얼굴의 특성 영역에 해당하는 후보 영역을 검출하는 방법을 제시한다. 검출된 얼굴후보 영역 및 특성 영역은 가변 모델인 동적 윤곽선 모델의 초기값으로 자동 적용되어 윤곽선 모델 적용시 문제점가운데 하나인 초기값 설정문제를 해결함과 동시에 얼굴 및 얼굴 특징 정보의 정확한 윤곽선을 추출하는데 사용된다. 실험 결과 제시된 방법을 적용한 결과 빠르고 효과적으로 얼굴 및 특성 영역을 검출 할 수 있음을 입증 할 수 있었다.

  • PDF