• Title/Summary/Keyword: 정량.정성적 평가

Search Result 807, Processing Time 0.033 seconds

Analysis of the Gas Feed Distribution at the Gas Sweetening Absorber Using CFD (CFD를 활용한 산성가스 처리공정용 흡수탑 가스분산성 향상 연구)

  • Lee, Ji Hyun;Shim, Sung-Bo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.314-320
    • /
    • 2014
  • Regarding the design of the gas sweetening absorber, the gas distribution analysis for the increase of the sour gas removal and reduction of the tower height is very important research topics. Recently, regarding the $CO_2$ capture technology which is a promising option for the reduction of the greenhouse gas (GHG), the need for the gas distribution improvement is increased as the gas treating capacity increases. In this paper, we have investigated the sour gas distribution in the absorber using CFD (Computational Fluid Dynamics) based on 10 MW post-combustion $CO_2$ capture plant installed in Boryeong power station, Korea Midland Power company. For this purpose, we suggested the three possible technology options (splash plate, spiral gas line and U-tube) for the gas distribution enhancement and compared the effect of the each cases. The result showed that the U-tube installed in the absorber increase the gas distribution about 30% compared to the base case, while the delta P increasement was about 10%. From these results, it was found that the U-tube installation is an effective technology option for the gas distribution enhancement in the gas sweetening absorber.

Comparative Analysis of the Psychological State and Driving Safety for Driving within the Platoons of Trucks by Drivers Driving Performance (화물차 군집주행 간격에 따른 운전자의 운전수행능력별 심리상태 및 주행안전성 비교 연구)

  • Park, Hyun jin;Park, Jae beom;Lee, Ki young;Song, Chang jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.147-161
    • /
    • 2021
  • The purpose of this study was to investigate the psychological state and driving safety of drivers driving around the truck platoon driving. Using the driving simulator, the experimental environment was constructed with the situation of changing lanes to the platoon and driving within the platoon. We tried to qualitatively and quantitatively analyze the driver's psychological state and driving safety through simulation driving experiments. As a result, in the case of the older driver group, there were many cases where they judged themselves to be driving safely, even though they were driving dangerously in the actual lane change to the platoon or driving within the platoon. In particular, this group showed that the narrower the distance between vehicles, the greater the misrecognition. The results of this study are expected to be useful in deriving the optimum interval when the interval between platooning of trucks needs to be temporarily extended.

Urea Conversion via Enzymes Immobilized on Magnetic Microparticles (자성 미세입자에 고정된 효소를 통한 요소 전환)

  • Yeseul Park;Jieun Kwon;Seungjun Jung;Hyukjin Cho;Gounhanul Shin;Gangik Cho;Jin-Won Park;Kyung-Hyuk Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.407-411
    • /
    • 2023
  • The urease is covalently immobilized on the surface of the magnetic particles to catalyze the conversion of urea to bicarbonate anion. The conversion was confirmed qualitatively using high-pressure liquid chromatography and UV/Vis spectrometry, and analyzed quantitatively with cyclic voltammetry. The amount of conversion with respect to time was measured and analyzed by the reaction rate equation to calculate a reaction rate constant of 0.0474 min-1. In the 1 to 3 cycles, a conversion percentage of over 90% was found, and it was possible to reuse the urease 8 times up to the percentage of 50%. It was also observed that the stability evaluated for storage for 30 days was maintained. As a result of this study, it can be seen that the urease covalently immobilized on the scaffold can be used for urea removal for the purpose of producing ultrapure water.

Investigation of Microbiological Safety of on-farm Produce in Korea (국내 생산단계 농산물의 미생물학적 안전성 조사)

  • Kim, Won-Il;Gwak, Min-Gyu;Jo, A-Ra;Ryu, Sang Don;Kim, Se-Ri;Ryu, Song Hee;Kim, Hwang-Yong;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.1
    • /
    • pp.20-26
    • /
    • 2017
  • Foodborne disease outbreaks associated with produces have been increasing in occurrence worldwide. This study investigated microbial contamination levels on thirteen kinds of agricultural products from farms stage to evaluate potential hazards associated with foodborne illness. A total of 1,820 samples were collected in major cultivating area from 2013 through 2015, and analyzed to enumerate aerobic bacterial counts, coliforms/E. coli, Bacillus cereus and Staphylococcus aureus. In addition, the prevalence study for four kinds of microorganisms (Escherichia coli, E. coli O157:H7, Salmonella spp. and Listeria monocytogenes) was performed on each sample. Aerobic bacterial counts ranged from 0.01 to 7.18 log CFU/g, with the highest bacterial cell counts recorded for watermelon. Coliforms were detected in 651 samples (35.8%) with a minimum of 0.01 log CFU/g and a maximum of more than 5 log CFU/g. B. cereus was detected in 169 samples (9.3%) ranging from < 0.01 to 2.48 log CFU/g among total samples analyzed. S. aureus was detected in 14 samples (0.7%) with a minimum of 0.01 log CFU/g and a maximum of 1.69 log CFU/g. E. coli was detected in 101 samples (5.5%) among 1,820 samples. E. coli O157:H7, Salmonella spp. and L. monocytogenes were not detected in any of the samples. The microbial contamination levels of several agricultural products determined in this study may be used as the fundamental data for microbiological risk assessment (MRA).

A Study on the Chemical Index of Alteration of Igneous Rocks (화성암의 화학적 변질지수에 관한 연구)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Kim, In-Soo;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.41-54
    • /
    • 2012
  • The weathering process of rocks leads to the reduction of geotechnical bearing capacity. The weathering of granite is frequently used to refer to the degradation of geotechnical property in the design and construction of infra-structure. In this study, the range of values of CIA (chemical index of alteration) and the change of mineral compositions by weathering have been analysed with igneous rock, which covers 45.5% in South Korean territory. Several weathering indices were studied for various rocks found in Korea and significant relationships between different indices were delineated via statistical analysis. The applicability of CIA was found to be the most significant among all weathering indicies. The composition of illite, the secondary weathering residual, generally increases for the felsic rock, and swelling clay material is not included. The weathering of felsic rock will follow a sequential process, starting from bed rock, illite, and chlorite to kaoline. The mafic rock will show weathering process, from bed rock, smectite, and chlorite to kaoline. The intermediate rocks such as andesite and tuff will show similar weathering procedure and the composition of kaoline, chlorite, and smectite tends to increase more than that of illite when the mafic rock is dominated. This means the increase of rock material which has high CEC (cation exchange capacity) during secondary weathering process. However, the characteristics of a specific rock cannot be completely analyzed using merely CIA, since it is exclusively based on chemical composition and corresponding alteration. The CIA can be used to quantify the weathering process in a limited range, and further considerations such as rock composition, strength characteristics will be required to configure the comprehensive weathering impact on any specific region.

Sensitivity Analysis of Drought Impact Factors Using a Structural Equation Model and Bayesian Networks (구조방정식모형과 베이지안 네트워크를 활용한 가뭄 영향인자의 민감도 분석)

  • Kim, Ji Eun;Kim, Minji;Yoo, Jiyoung;Jung, Sungwon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • Drought occurs extensively over a long period and causes great socio-economic damage. Since drought risk consists of social, environmental, physical, and economic factors along with meteorological and hydrological factors, it is important to quantitatively identify their impacts on drought risk. This study investigated the relationship among drought hazard, vulnerability, response capacity, and risk in Chungcheongbuk-do using a structural equation model and evaluated their impacts on drought risk using Bayesian networks. We also performed sensitivity analysis to investigate how the factors change drought risk. Overall results showed that Chungju-si had the highest risk of drought. The risk was calculated as the largest even when the hazard and response capacity were changed. However, when the vulnerability was changed, Eumseong-gun had the greatest risk. The sensitivity analysis showed that Jeungpyeong-gun had the highest sensitivity, and Jecheon-si, Eumseong-gun, and Okcheon-gun had highest individual sensitivities with hazard, vulnerability, and response capacity, respectively. This study concluded that it is possible to identify impact factors on drought risk using regional characteristics, and to prepare appropriate drought countermeasures considering regional drought risk.

A Study on the Effect of Improving Permeability by Injecting a Soil Remediation Agent in the In-situ Remediation Method Using Plasma Blasting, Pneumatic Fracturing, and Vacuum Suction Method (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화제 주입에 따른 투수성 개선 연구)

  • Geun-Chun Lee;Jae-Yong Song;Cha-Won Kang;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.371-388
    • /
    • 2023
  • A stratum with a complex composition and a distributed low-permeability soil layer is difficult to remediate quickly because the soil remediation does not proceed easily. For efficient purification, the permeability should be improved and the soil remediation agent (H2O2) should be injected into the contaminated section to make sufficient contact with the TPH (Total petroleum hydrocarbons). This study analyzed a method for crack formation and effective delivery of the soil remediation agent based on pneumatic fracturing, plasma blasting, and vacuum suction (the PPV method) and compared its improvement effect relative to chemical oxidation. A demonstration test confirmed the effective delivery of the soil remediation agent to a site contaminated with TPH. The injection amount and injection time were monitored to calculate the delivery characteristics and the range of influence, and electrical resistivity surveying qualitatively confirmed changes in the underground environment. Permeability tests also evaluated and compared the permeability changes for each method. The amount of soil remediation agent injected was increased by about 4.74 to 7.48 times in the experimental group (PPV method) compared with the control group (chemical oxidation); the PPV method allowed injection rates per unit time (L/min) about 5.00 to 7.54 times quicker than the control method. Electrical resistivity measurements assessed that in the PPV method, the diffusion of H2O22 and other fluids to the surface soil layer reduced the low resistivity change ratio: the horizontal change ratio between the injection well and the extraction well decreased the resistivity by about 1.12 to 2.38 times. Quantitative evaluation of hydraulic conductivity at the end of the test found that the control group had 21.1% of the original hydraulic conductivity and the experimental group retained 81.3% of the initial value, close to the initial permeability coefficient. Calculated radii of influence based on the survey results showed that the results of the PPV method were improved by 220% on average compared with those of the control group.

Neuro-Anatomical Evaluation of Human Suitability for Rural and Urban Environment by Using fMRI (자연과 도시환경의 인체친화성에 대한 신경해부학적 평가: 기능적 자기공명영상법)

  • Kim, Gwang-Won;Song, Jin-Kyu;Jeong, Gwang-Woo
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.18-27
    • /
    • 2011
  • The purpose of this study was to identify different cerebral areas of the human brain associated with rural and urban picture stimulation using a 3.0 Tesla functional magnetic resonance imaging (fMRI) and further to investigate the human suitability for rural and urban environments. A total of 27 right-handed participants (mean age: $27.3{\pm}3.7$) underwent fMRI study on a 3.0T MR scanner. The brain activation patterns were induced by visual stimulation with each rural and urban sceneries. The participants were divided into two groups as 26 subjects favorable to rural scenery and 14 subjects unfavorable to urban scenery based on their filled-in questionnaire. The differences of the brain activation in response to two extreme types of pictures by the two sample t-test were characterized as follows: the activation areas observed in rural scenery over urban were the insula, middle frontal gyrus, precuneus, caudate nucleus, superior parietal gyrus, superior occipital gyrus, fusiform gyrus, and globus pallidus. In urban scenery over rural, the inferior frontal gyrus, parahippocampal gyrus, postcentral gyrus, superior temporal gyrus, amygdala, and posterior cingulate gyrus were activated. The fMRI patterns also clearly show that rural scenery elevated positive emotion such as happiness and comfort. On the contrary, urban scenery elevated negative emotion, resulting in activation of the amygdala which is the key region for the feelings of fear, anxiety and unpleasantness. This study evaluated differential cerebral areas of the human brain associated with rural and urban picture stimulation using a 3.0 Tesla fMRI. These findings will be useful as an objective evaluation guide to human suitability for ecological environments that are related to brain activation with joy, anger, sorrow and pleasure.

Research Trend on the Accumulation Routes of Microplastics in Soil and Their Analytical Methodologies (토양 내 미세플라스틱의 축적경로 및 분석기법 연구 동향)

  • Choi, Hyung-Jun;An, Jinsung;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.360-367
    • /
    • 2020
  • In this study, the accumulation and distribution routes of microplastics in soil environment were examined, and their analytical methodologies were summarized. Density separation and removal process of inhibition materials were introduced for the separation of microplastics in soil and the basic principles and limitations of quantitative and qualitative analyses including pyrolysis gas chromatography mass spectrometry, µ-Raman spectrometry, fourier transform infrared spectrometry, and microscopes were investigated. Chemical extraction methods for the analysis of mediated hazardous substance (additives and sorbed matters) in microplastics were also discussed with focusing on in vitro bioaccessibility assay for the human oral exposure route. Based on the described methodologies for the analysis of microplastics in soil, it is expected that these methods enable to select appropriate analysis techniques in consideration of medium state, contamination level and sample quantity.

The Comparative Analysis of Exposure Conditions between F/S and C/R System for an Ideal Image in Simple Abdomen (복부 단순촬영의 이상적 영상구현을 위한 F. S system과 C.R system의 촬영조건 비교분석)

  • Son, Sang-Hyuk;Song, Young-Geun;Kim, Je-Bong
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • 1. Purpose : This study is to present effective exposure conditions to acquire the best image of simple abdomen in Film Screen (F.S) system and Computed Radiography (C.R) system. 2. Method : In the F.S system, while an exposure condition was fixed as 70kVp, images of a patients simple abdomen were taken under the different mAs exposure conditions. Among these images, the best one was chosen by radiologists and radiological technologists. In the C.R system, the best image of the same patient was acquired with the same method from the F.S system. Both characteristic curves from F.S system and C.R system were analyzed. 3. Results : In the F.S system, the best exposure condition of simple abdomen was 70kVp and 20mAs. In the CR system, with the fixed condition at 70kVp, the image densities of human organs, such as liver, kidney, spleen, psoas muscle, lumbar spine body and iliac crest, were almost same despite different environments (3.2mAs, 8mAs, 12mAs, 16mAs and 20mAs). However, when the exposure conditions were over or under (below) 12mAs, the images between the abdominal wall and the directly exposed part became blurred because the gap of density was decreased. In the C.R system, while the volume of mAs was decreased, an artifact of quantum mottle was increased. 4. Conclusion : This study shows that the exposure condition in the C.R system can be reduced 40% than in the F.S system. This paper concluded that when the exposure conditions are set in CR environment, after the analysis of equipment character, such as image processing system(EDR : Exposure Data Recognition processing), PACS and so on, the high quality of image with maximum information can be acquired with a minimum exposure dose.

  • PDF