• Title/Summary/Keyword: 정량적 초음파

Search Result 229, Processing Time 0.024 seconds

A Study on the Estimation of Temperature Dependance in Tissue by Ultrasound (초음파에 의한 조직의 온도의존성에 관한 연구)

  • 이상민;박형배
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.165-172
    • /
    • 1989
  • In this paper, the temperature dependence of tissue is estimated by measuring the attenuation coefficient and the propagation velocity of ultrasonic reflection signal. And, on the basis of expeiments, the possibility of non- invasive temperature estimation is considered. Specimens in the experiment are acryl 1)late. muscle, fat and liver of pig. The temperature of specimen is controlled by water bath which is able to adjust temperature a quarter of a degree. Through the series of experiments, we conformed that the ultrasonic parameters have lin earity to a certain extents with the change of tissue's temperature. And we expect that noninvasive temperature estimation of tissue can be realized after several preconditions be satisfied with the standard experiment conditions and a great number of base data.

  • PDF

Comparison of Ultrasound Image Quality using Edge Enhancement Mask (경계면 강조 마스크를 이용한 초음파 영상 화질 비교)

  • Jung-Min, Son;Jun-Haeng, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.157-165
    • /
    • 2023
  • Ultrasound imaging uses sound waves of frequencies to cause physical actions such as reflection, absorption, refraction, and transmission at the edge between different tissues. Improvement is needed because there is a lot of noise due to the characteristics of the data generated from the ultrasound equipment, and it is difficult to grasp the shape of the tissue to be actually observed because the edge is vague. The edge enhancement method is used as a method to solve the case where the edge surface looks clumped due to a decrease in image quality. In this paper, as a method to strengthen the interface, the quality improvement was confirmed by strengthening the interface, which is the high-frequency part, in each image using an unsharpening mask and high boost. The mask filtering used for each image was evaluated by measuring PSNR and SNR. Abdominal, head, heart, liver, kidney, breast, and fetal images were obtained from Philips epiq5g and affiniti70g and Alpinion E-cube 15 ultrasound equipment. The program used to implement the algorithm was implemented with MATLAB R2022a of MathWorks. The unsharpening and high-boost mask array size was set to 3*3, and the laplacian filter, a spatial filter used to create outline-enhanced images, was applied equally to both masks. ImageJ program was used for quantitative evaluation of image quality. As a result of applying the mask filter to various ultrasound images, the subjective image quality showed that the overall contour lines of the image were clearly visible when unsharpening and high-boost mask were applied to the original image. When comparing the quantitative image quality, the image quality of the image to which the unsharpening mask and the high boost mask were applied was evaluated higher than that of the original image. In the portal vein, head, gallbladder, and kidney images, the SNR, PSNR, RMSE and MAE of the image to which the high-boost mask was applied were measured to be high. Conversely, for images of the heart, breast, and fetus, SNR, PSNR, RMSE and MAE values were measured as images with the unsharpening mask applied. It is thought that using the optimal mask according to the image will help to improve the image quality, and the contour information was provided to improve the image quality.

Display-Pixel-Based Focusing Method for Ultrasound Imaging (의료 초음파 영상을 위한 화소단위 집속기법)

  • 황재섭;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.419-431
    • /
    • 2000
  • In this paper, a new beamforming technique is proposed, which can completely eliminate all the artifacts caused by digital scan converter. In the proposed method, named display-pixel-based focusing(DPBF) by the authors, ultrasound waves are focused directly at the display pixels instead of sampling points on the polar coordinate. Consequently. the DPBF system does not require the digital scan converter. To verify the proposed method, we modified a commercial scanner and performed experiments with a 3.5 MHz convex array and a 7.5 MHz linear array. We also defined and measured ICRA/B(Image Coarseness Ratio) to compare the image quality quantitatively. The experimental results with in vivo and in vitro data show that the proposed method improves the ICRA/B considerably, resulting in much smoother and finer images.

  • PDF

Correlations between Acoustic Properties and Bone Mineral Density in Bovine Femoral Trabecular Bone In Vitro (생체 외 조건의 소 대퇴골 해면질골에서 음향특성과 골밀도 사이의 상관관계)

  • Hwang, Kyo-Seung;Seo, Dong-Wan;Lee, Kang-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.244-252
    • /
    • 2012
  • The purpose of the present study is to investigate the correlations between acoustic properties, such as speed of sound and normalized broadband ultrasound attenuation, and bone mineral density in femur with high fracture risk. The speed of sound and the normalized broadband ultrasound attenuation in 15 bovine femoral trabecular bone samples in vitro were measured by using a through-transmission method with two matched pairs of ultrasonic transducers with center frequencies of 0.5 and 1.0 MHz. The volumetric bone mineral density of the trabecular bone samples was measured by using micro-computed tomography. The bone mineral density exhibited strong correlations with both the speed of sound and the normalized broadband ultrasound attenuation measured by using the 0.5 and the 1.0 MHz transducers. The highest correlation was found between the bone mineral density and the normalized broadband ultrasound attenuation measured by using the 0.5 MHz ultrasonic transducers. The results suggest that the acoustic properties measured in the femur in vitro can be used as indices for the prediction of femoral bone mineral density.

Nondestructive Evaluation of Adhesive Bonding Quality by Measurements of Peak Amplitude of Simulated Stress Wave (모의 음향 방출 신호의 Peak Amplitude측정을 통한 복합 재료 접합부의 비파괴평가)

  • Son, Y.H.;Lee, J.O.;Lee, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.2
    • /
    • pp.357-363
    • /
    • 1995
  • Disbond size of adhesively bonded single lap and double lap joints CFRP composite specimens has been evaluated using acousto-ultrasonic(AU) technique. Frequency spectra for all specimens were obtained by measuring peak amplitude of the stress wave propagated through the bond-lines. By analyzing these frequency spectra, peak amplitude was found to be proportional to fractional bonding area and to be maxima at the fundamental and the third order higher harmonic frequencies of specimen thickness mode. The disbond size can be evaluated quantitatively and this technique can be applied to real structures if the reference specimens are prepared in advancve.

  • PDF

Constitutive equations for curing epoxy resins (경화중의 에폭시레진에 대한 구성방정식)

  • Hahn, H. T.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.29-35
    • /
    • 1984
  • 에폭시 레진이 경화될 때 이들의 기계적 성질의 변화는 지금까지 주로 실험과 실험식에 의하여 구하여졌다. 근간에 이들의 변화를 이론적으로 구하기 위한 구성방정식이 본 발표자에 의하여 발표되었으나 실험데이터와 구성방정식 상호간의 정량적 관계가 정립되지는 못하였다. 본 연구 에서는 세 종류의 시료, 즉 Epon 815/V140, Epon 820/Z와 DER 332가 경화될 때 이들의 기계적 성질을 구성방정식을 사용하여 구하여 초음파 방법으로 측정된 실험 결과와 비교검토함으로써 에폭시 레진의 경화에 따른 기계적 성질들의 대부분을 제안된 구성 방정식으로 구할 수 있음을 보였다.

  • PDF

DR (Digital Radiography) 적용을 위한 Biology 초음파 특수용매를 이용한 $PbI_2$ 합성법

  • Kim, Seong-Heon;Yun, Min-Seok;O, Gyeong-Min;Kim, Yeong-Bin;Lee, Sang-Hun;Jo, Gyu-Seok;Park, Hye-Jin;Nam, Sang-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.146-146
    • /
    • 2009
  • 최근에 광도전체와 형광체를 기반으로 평판형 디지털 방사선 검출기의 상업적 발전가능성에 많은 관심을 가지고 있다. 본 연구는 기존의 직접변환방식에 널리 사용되었던 비정질 셀레늄 (amorphous selenium) 기반의 디지털 방사선 검출기보다 높은 전기적신호 및 동작특성을 가지는 물질층을 제작하기 위해 High Purity (99.99%)의 상용화된 $PbI_2$를 특수용매에 담가두었다가 약 1시간동안 Biology 초음파 처리한 후 농축기를 사용하여 건조된 $PbI_2$를 3Roll-milling을 사용하여 미세크기의 Powder를 얻어내었다. 합성된 $PbI_2$ Powder를 PIB(Particle-in-Binder)법을 이용하여 전도성을 가진 ITO(Indium-tin-oxide)코팅된 유리판에 제작된 필름의 상부에 Magnetron sputtering system 을 사용하여 전극을 $1cm{\times}1cm$의 크기로 증착하였다. I-V 테스트를 통하여 X선 조사시 $PbI_2$필름의 Sensitivity, Dark current, SNR(signal-to-noise ratio)을 측정하여 필름의 전기적 검출 특성을 정량적으로 평가하였고 SEM(scanning electron microscope)을 통하여 입자의 크기를 관찰하였다.

  • PDF

A Pulse-Echo Testing Model for Partially Damaged Ultrasonic Transducers (부분 손상을 입은 초음파 탐촉자의 펄스-에코 시험 모델)

  • Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.2
    • /
    • pp.95-108
    • /
    • 1996
  • In ultrasonic testing, flaw signal from which quantitative information on flaws is determined is influenced by 3 factors : (1) the incident wavefield.produced by the transducer, (2) the scattered waves produced by flaws, and (3) the reception of the scattered waves back at the transducer. So even small changes in transducer performance due to aging or unexpected damages can produce the changes in the characteristics of flaw signal and finally the changes in the quantitative information on flaws. Thus a reliable calibration method of transducer performance is desired. Recently, theoretical models for ultrasonic testing have been employed as reference standards for the calibration of transducers which are considered as circular planar piston sources in the most of cases. But this simplification cannot be applied to partially damaged transducer which has lost their symmetry in performance, even not in appearance. Unfortunately there has been no reliable practical model which can be used for the calibration of partially damaged transducers. Here a pulse-echo testing model for partially damaged ultrasonic transducers was developed with experimental verification. The experimental responses agree very well with the theoretical prediction. So we expect that this model can be served as a theoretical reference standards for transducer calibration.

  • PDF

Research of Remote Inspection Method for River Bridge using Sonar and visual system (수중초음파와 광학영상의 하이브리드 시스템을 이용한 교각 수중부 원격점검 기법 연구)

  • Jung, Ju-Yeong;Yoon, Hyuk-Jin;Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.330-335
    • /
    • 2017
  • This study applied SONAR(Sound Navigation And Ranging) to the inspection and evaluation of underwater structures. Anactual river bridge was chosen for inspection and evaluation. SONAR and an optical camera were operated together to analyze the underwater image of the bridge. SONAR images were obtained by various methods to remove the environmental variables from the field experiment, and it was confirmed that the reliability of detecting damaged areas on piers was decreased when using SONAR alone. The SONAR equipment and the optical camera can be used simultaneously to overcome the limitations of SONAR in inspecting underwater structures.These results can be used as basic data for the development of similar technologies for underwater structure inspection.

Adaptive quantization for effective data-rate reduction in ultrafast ultrasound imaging (초고속 초음파 영상의 효과적인 데이터율 저감을 위한 적응 양자화)

  • Doyoung Jang;Heechul Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.422-428
    • /
    • 2023
  • Ultrafast ultrasound imaging has been applied to various imaging approaches, including shear wave elastography, ultrafast Doppler, and super-resolution imaging. However, these methods are still challenging in real-time implementation for three Dimension (3D) or portable applications because of their massive data rate required. In this paper, we proposed an adaptive quantization method that effectively reduces the data rate of large Radio Frequency (RF) data. In soft tissue, ultrasound backscatter signals require a high dynamic range, and thus typical quantization used in the current systems uses the quantization level of 10 bits to 14 bits. To alleviate the quantization level to expand the application of ultrafast ultrasound imaging, this study proposed a depth-sectional quantization approach that reduces the quantization errors. For quantitative evaluation, Field II simulations, phantom experiments, and in vivo imaging were conducted and CNR, spatial resolution, and SSIM values were compared with the proposed method and fixed quantization method. We demonstrated that our proposed method is capable of effectively reducing the quantization level down to 3-bit while minimizing the image quality degradation.