Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1164-1168
/
2010
수자원이 우리 생활의 전반적으로 중요한 역할을 차지하면서 댐의 효율적인 운영과 안정적인 용수공급에 대한 연구는 지속적으로 수행되어지고 있다. 1990년대 이후 비선형적인 특성을 잘 모의하는 장점을 가진 인공신경망(ANN)을 이용하여 유입량 예측에 대한 많은 연구가 수행되었다. 하지만 ANN 모형을 포함한 회귀모형은 월 강우 및 유입량의 예측에 대해 간편하게 사용을 할 수 있지만, 예측의 정확성에 한계를 가지고 있다. 본 연구에서는 ANN 모형과 회귀모형의 예측오차를 후처리 과정을 통하여 오차를 줄임으로써 예측모형의 성과를 향상시키는 방법을 제안하였다. 연구지역은 금강수계의 대청댐 유역으로, 1982년 9월부터 2005년 12월에 해당하는 유역 내 11개 지점의 강우관측소에서 관측한 월 강우와 댐 유입량을 수집하여 모형을 구축하였다. 강우량과 유입량 자료에 대해 자기상관함수와 교차상관함수를 이용하여 입력변수를 결정하였고, 정규화를 통한 전처리 과정을 거쳐 ANN 모형과 회귀모형을 이용한 예측모형을 구축하였으며, 예측성과의 향상을 위하여 군집 분석을 이용하여 오차를 재조정하였다. 이러한 오차 후처리 과정을 포함한 모형은 RMSE와 상관계수를 이용하여 비교 평가한 결과, 예측성과를 약 40% 정도 향상시켰다.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.380-380
/
2019
본 연구에서는 일반 상호보완이론(Generalized Complementary Relationship, GCR)을 활용하여 실제증발산량을 추정하고, 추정한 실제증발산량기반 가뭄지수로부터 미국 전역에 대한 가뭄을 해석하는 것이다. 월강수량, 최고 최저기온, 이슬점온도 등의 필요한 기상자료는 Parameter-elevation Relationships on Independent Slopes Model(PRISM)으로부터 수집하였으며, 1981년부터 2015년까지 총 35년의 미국 전역에 대한 실제증발산량을 추정하였다. 대상지역의 유역평균 강수량과 유출량의 차(P-Q)와 North American Land Data Assimilation System(NLDAS-2) Noah 지표모형(Land surface models)으로 산정한 실제증발산량과 비교 검증하였다. GCR로부터 증발산 부족량(ET Deficit, ETD)을 산정하고 이를 표준정규화하여 미국 전역에 대해 Standardized Evapotranspiration Deficit Index(SEDI)를 산정하였다. 본 연구로부터 GCR 기반 실제증발산량은 P-Q의 값과 상관계수가 0.94로 매우 높은 상관성을 보였으며, NLDAS-2 Noah모형의 실제증발산량보다 다소 크게 추정하는 경향을 보였다. SEDI와 Standard Precipitation Index(SPI)의 상관성은 지속시간이 클수록 더 크게 나타났다. 증발산 상호보완이론활용 실제증발산기반 SEDI이 강수자료를 사용하지 않고서도 적절한 가뭄해석에 이용될 수 있을 것으로 판단된다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.5
/
pp.1007-1017
/
2019
Currently, most biometrics system authenticates users by using single biometric information. This method has many problems such as noise problem, sensitivity to data, spoofing, a limitation of recognition rate. One method to solve this problems is to use multi biometric information. The multi biometric authentication system performs information fusion for each biometric information to generate new information, and then uses the new information to authenticate the user. Among information fusion methods, a score-level fusion method is widely used. However, there is a problem that a normalization operation is required, and even if data is same, the recognition rate varies depending on the normalization method. A rank-level fusion method that does not require normalization is proposed. However, a existing rank-level fusion methods have lower recognition rate than score-level fusion methods. To solve this problem, we propose a rank-level fusion method with higher recognition rate than a score-level fusion method using correlation coefficient. The experiment compares recognition rate of a existing rank-level fusion methods with the recognition rate of proposed method using iris information(CASIA V3) and face information(FERET V1). We also compare with score-level fusion methods. As a result, the recognition rate improve from about 0.3% to 3.3%.
The process capability index is used to determine whether a production process is capable of producing items within a specified tolerance. Some process capability indices $C_p$, $C_{pk}$ and $C_{pm}$ have been of particular interest as useful management tools for tracking process performance. Most evaluations on process capability indices focus on statistical estimation and test of hypothesis. It is necessary to investigate their asymptotic correlationship among basic estimators ${\hat{C}}_p$, ${\hat{C}}_{pk}$ and ${\hat{C}}_{pm}$ of process capability indices $C_p$, $C_{pk}$ and $C_{pm}$. In this paper, we study their asymptotic correlationship for three process capability indices ${\hat{C}}_p$, ${\hat{C}}_{pk}$ and ${\hat{C}}_{pm}$ under bivariate normal distribution BN(${\mu}_x,{\mu}_y,{\sigma}^2_x,{\sigma}^2_y,{\rho}$). With some nonnormal processes, the asymptotic correlation coefficient of any two respective process capability index estimators could be established.
When large-scale gene expression data are analyzed using lasso regression, the estimation of regression coefficients may be unstable due to the highly correlated expression values between associated genes. This irregularity, in which the coefficients are reduced by L1 regularization, causes difficulty in variable selection. To address this problem, we propose a regression model which exploits the repetitive bootstrapping of gene expression values prior to lasso regression. The genes selected with high frequency were used to build each regression model. Our experimental results show that several genes were consistently selected in all regression models and we verified that these genes were not false positives. We also identified that the sign distribution of the regression coefficients of the selected genes from each model was correlated to the real dependent variables.
To predict the real bearing capacity and settlement of the shallow foundation the plate load test results were used. But there is no field estimation method about igneous weathered soil and rock. Therefore, to predict the settlement equation, the plate load test about igneous weathered soil and rock was done in this study. To analyze the load ~ relative settlement curve by normalization, it did not use normal analysis method, but the load ~ relative settlement (s/B, s : settlement, B : breadth of plate) was used. As a result of normalization by load ~ relative settlement conception, the curve was regular regardless of plate diameter and it was suggested the relationship of in-situ soil condition and results.
Recently, after the reorganization as the basis of NCS education, various learning methods are being sought for improving the basic occupational ability and job ability required by NCS, and the evaluation method accordingly is urgently needed. The purpose of this study was to evaluate the applicability of meta-cognitive learning and Havruta learning as evaluation cases in order to improve the job skills and basic skills required in the NCS curriculum. As a result, the meta-cognitive learning response sample statistic showed an average of 2.6883 when the pre-meta-cognitive learning questionnaire was a 5-point scale, and an average of 4.2468 after the meta-cognitive learning questionnaire. The correlation coefficient was 0.782 and the significance probability was 0.045. In the case of the Havruta learning correspondence sample statistic, the average of 3.1515 when the preliminary Havruta learning questionnaire was a 5 point scale and the average of the post-Havruta learning questionnaire was 4.3853, which was improved by 1.23 points. The correlation coefficient was 0.631 and the significance probability was 0.049. Meta-cognitive learning and Havruta learning were found to be correlated. The mean of meta cognition was 3.4675 and the mean of Havruta was 3.7684. Metacognitive learning and Havruta learning were -0.042 And there was no statistically significant difference. Therefore, the learning method to improve the job ability should be applied considering the characteristics of the subject.
Normally consolidated and slightly overconsolidated soft clay layer is widely distributed in the south coast of Korea. To ensure the efficient and economical construction design of any structure to be built on this soft soil, exhaustive studies are required related to geotechnical engineering properties. In this study, the relationship of the physical properties of southern marine clay in the Korea Peninsula were examined, including natural water content, specific gravity, total unit weight, initial void ratio, liquid limit, plastic limit, and physical properties of activity and soil parameters. For the parameter relationship analysis, the latest relatively reliable data on the large harbor construction work were used, optimum values were deducted with linear regression and non-linear regression between soil parameters, water content or initial void ratio appears to be very large. Moreover, in the linear and involution pattern regression, equal coefficient of determination appeared. The relationship of the different parameters was shown to be excellent in the non-linear regression of involution equation and exponential equation pattern compared with the findings of linear regression analysis.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.6
/
pp.995-1002
/
2020
This paper investigates the achievable data rate for non-orthogonal multiple access(NOMA) with correlated information sources(CIS), under the binary phase shift keying(BPSK) modulation, in contrast to most of the existing NOMA designs using continuous Gaussian input modulations. First, the closed-form expression for the achievable data rate of NOMA with CIS and BPSK is derived, for both users. Then it is shown by numerical results that for the stronger channel user, the achievable data rate of CIS reduces, compared with that of independent information sources( IIS). We also demonstrate that for the weaker channel user, the achievable data rate of CIS increases, compared with that of IIS. In addition, the intensive analyses of the probability density function(PDF) of the observation and the inter-user interferennce(IUI) are provided to verify our theoretical results.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.1
/
pp.15-23
/
2022
Among the learning methods for Continuous Learning environments, "Learning without Forgetting" has fixed regularization strengths, which can lead to poor performance in environments where various data are received. We suggest a way to set weights variable by identifying the features of the data we want to learn. We applied weights adaptively using correlation and complexity. Scenarios with various data are used for evaluation and experiments showed accuracy increases by up to 5% in the new task and up to 11% in the previous task. In addition, it was found that the adaptive weight value obtained by the algorithm proposed in this paper, approached the optimal weight value calculated manually by repeated experiments for each experimental scenario. The correlation coefficient value is 0.739, and overall average task accuracy increased. It can be seen that the method of this paper sets an appropriate lambda value every time a new task is learned, and derives the optimal result value in various scenarios.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.