• Title/Summary/Keyword: 정격

Search Result 699, Processing Time 0.024 seconds

A Study on Bond Wire Fusing Analysis of GaN Amplifier and Selection of Current Capacity Considering Transient Current (GaN증폭기의 본드 와이어 용융단선 현상분석과 과도전류를 고려한 전류용량 선정에 대한 연구)

  • Woo-Sung, Yoo;Yeon-Su, Seok;Kyu-Hyeok, Hwang;Ki-Jun, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.537-544
    • /
    • 2022
  • This paper analyzes the occurrence and cause of bond wires fusing used in the manufacture of pulsed high power amplifiers. Recently GaN HEMT has been spotlight in the fields of electronic warfare, radar, base station and satellite communication. In order to produce the maximum output power, which is the main performance of the high-power amplifier, optimal impedance matching is required. And the material, diameter and number of bond wires must be determined in consideration of not only the rated current but also the heat generated by the transient current. In particular, it was confirmed that compound semiconductor with a wide energy band gap such as GaN trigger fusing of the bond wire due to an increase in thermal resistance when the design efficiency is low or the heat dissipation is insufficient. This data has been simulated for exothermic conditions, and it is expected to be used as a reference for applications using GaN devices as verified through IR microscope.

A Study on the Response Characteristics of 200MW Gas Turbine Governor System (200MW급 가스터빈 조속기 응답특성에 대한 연구)

  • Han, Young-Bok;Nam, Kang-Hyun;Kim, Sung-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.625-632
    • /
    • 2022
  • Gas turbine generators in load-following operation in the domestic power system play a major role in maintaining the rated frequency, but often have poor frequency control. Therefore, after examining the control characteristics of the governor, which is a gas turbine speed control device, and analyzing the failure types, countermeasures were suggested for each case. In addition, it was confirmed through the governor response test that the gas turbine helps in frequency recovery depending on the speed of fuel control, but also acts as a factor impeding stable operation, such as rapid fluctuations in combustion chamber temperature and combustion vibration. Therefore, in order to maintain stable power quality, there was a need for thorough facility management as well as research on the governor control method in which the traditional PID control method and the machine learning algorithm, a core field of the 4th industry, were fused.

Step-by-step Tests for Continuous Thrust Control Hot-firing Test (연속 추력제어 연소시험을 위한 단계별 시험들)

  • Cheolwoong Kang;Shinwoo Lee;Sunwoo Han;Kangyeong Lee ;Hadong Jung;Dongwoo Choi;Kyubok Ahn
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.58-67
    • /
    • 2023
  • Results of dry-run tests, cold-flow tests, and hot-firing tests performed to throttle a methane engine uni-element thrust chamber are covered in the paper. After installing flow control valves on the oxidizer and fuel supply lines of the methane engine combustion test facility, a number of dry-run tests were repeated so that the valves could reach set strokes quickly and stably. Then, cold-flow tests using liquid nitrogen and gaseous nitrogen were conducted to confirm the stable supply of the simulated propellants according to the valve control. Finally, using liquid oxygen and gaseous methane, hot-firing tests for fixed and continuous thrust control of 50% to 10% of the nominal thrust were successfully performed.

Design of Optimal Thermal Structure for DUT Shell using Fluid Analysis (유동해석을 활용한 DUT Shell의 최적 방열구조 설계)

  • Jeong-Gu Lee;Byung-jin Jin;Yong-Hyeon Kim;Young-Chul Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.641-648
    • /
    • 2023
  • Recently, the rapid growth of artificial intelligence among the 4th industrial revolution has progressed based on the performance improvement of semiconductor, and circuit integration. According to transistors, which help operation of internal electronic devices and equipment that have been progressed to be more complicated and miniaturized, the control of heat generation and improvement of heat dissipation efficiency have emerged as new performance indicators. The DUT(Device Under Test) Shell is equipment which detects malfunction transistor by evaluating the durability of transistor through heat dissipation in a state where the power is cut off at an arbitrary heating point applying the rating current to inspect the transistor. Since the DUT shell can test more transistor at the same time according to the heat dissipation structure inside the equipment, the heat dissipation efficiency has a direct relationship with the malfunction transistor detection efficiency. Thus, in this paper, we propose various method for PCB configuration structure to optimize heat dissipation of DUT shell and we also propose various transformation and thermal analysis of optimal DUT shell using computational fluid dynamics.

A High-efficiency Buck-boost Half-bridge Inverter for Single-phase Photovoltaic Generation (단상 태양광 발전용 고효율 벅부스트 하프브리지 인버터)

  • Hyung-Min Ryu
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.450-455
    • /
    • 2023
  • Among single-phase photovoltaic inverters that can avoid excessive leakage current caused by the large parasitic capacitance of photovoltaic panels, a boost converter followed by a half-bridge inverter is the simplest and has the smallest leakage current. However, due to the high DC-link voltage, the rated voltage of the switching devices is high and the switching loss is large. This paper proposes a new circuit topology which can operate as a buck-boost inverter by adding two bidirectional switches to the output side of the half-bridge inverter instead of removing the boost converter. By reducing two stages of power conversion through the high-voltage DC-link to one stage, power loss can be reduced without increasing costs and leakage current. The feasibility of the proposed circuit topology is verified by computer simulation and power loss calculation.

Effect of Cooling Water Capacity on the Engine Performance for Small Diesel Engine (냉각수(冷却水) 용량(容量)이 소형(小型) 디젤기관(機關)의 성능(性能)에 미치는 영향(影響))

  • Myung, Byung Soo;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.265-278
    • /
    • 1986
  • This study was attempted to improve the thermal efficiency of 6 kW water-cooled diesel engine on power tiller. The engine performance tests were conducted to find out the effect of cooling water capacity of 2700cc, 2800cc, 2900cc, 3000cc, 3100cc on power, brake specific fuel consumption (BSFC), torque, temperature of cooling water and lubricating oil and friction losses of the engine with D. C. dynamometer. The results obtained in the study are summarized as follows: 1. The performance of the engine tested was adequated to Korea Industrial Standard but actual economy power was 10% higher than the labeled rated power of the engine. The BSFC of the engine tested 297.8g/kW-h which is belong a little higher level than hreign products. The temperature of cooling water was $101^{\circ}C$ which is higher than SAE standard ($88^{\circ}C$) 2. The friction losses of engine tested was 3.656 kW at 2200 rpm of rated rpm (piston speed 6.97m/sec) and is higher than those of foreign products. 3. When the cooling water capacity was increased from 2700cc to 3100cc the power output of the engine was increased from 6.7 kW to 7.13 kW at the rate of 6.4% and also the torque of the engine was increased from 28.85 N.m to 30.76 N.m at the rate of 6.39%. 4. When the cooling water capacity was increased from 2700cc to 3100cc, the BSFC was decreased 6.9g/kW-h from 310.9g/kW-h to 304.1g/kW-h, and after one half hour operation with full load, the temperature of cooling water was decreased $13^{\circ}C$ from $101^{\circ}C$ to $88^{\circ}C$ and also the temperature of lubricant oil was decreased $6.4^{\circ}C$ from $76.7^{\circ}C$ to $70.4^{\circ}C$. 5. The mechanical efficiency was increased from 70.08% to 71.08% when the cooling water capacity was increased from 2700cc to 3100cc.

  • PDF

Experimental Study on Position Control System Using Encoderless Magnetic Motion (엔코더리스 마그넷 모션을 이용한 위치제어에 대한 리니어모터 실험적 연구)

  • Kim, Hong-youn;Yun, Young-Min;Shim, Ho-Keun;Kwon, Young-Mok;Heo, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • A position control system composed of the PMLSM(Permanent Magnet Linear Synchronous Motor), unlike conventional linear permanent magnet synchronous motor is fixed to the permanent magnet moving coil rails (permanent magnet = stator, coil = mover), the coil is fixed, moving the permanent magnet, we propose a position control system (permanent magnet = mover, coil = stator) structure. Position is measured not using conventional encoder or resolver but by adopting vector control method using 2 hall sensors generating rectangular signal. This method estimate the velocity and position of mover by using the quadruple of two hall sensor signal instead of encoder signal. Vector control of PMLSM using 2 hall sensor generating rectangular wave is proved to control the system stable and efficiently through simulation. Also hardware experiment reveals that the position control performance is measured within the range of $30{\sim}50{\mu}m$ in the accuracy of $10{\sim}20{\mu}m$, which is improved twice to the conventional method. The proposed method exhibits its economical efficiency and practical usefulness. The vector control technique using two hall sensors can be installed in narrow place, accordingly it can be implemented on the system where the conventional encoder or resolver cannot operate.

Design of the Capacitor Discharge Ignition System (용량방전점화장치의 설계)

  • 박송배;김영길
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.2
    • /
    • pp.5-13
    • /
    • 1976
  • An analytical and experimental design procedure is described for the Capacitor Discharge Ignition (CDI) System with a view to fuel saving ann reduction of gas exhaustion and maintenance need. Specifically, the input and output voltage and current of a given ignition coil were calculated by using a simplified circuit model for the discharging system. The results were compared with the experimental results, from which ratings of the charging capacitor, the SCR and the diodes and the required output valtage of the DC.DC converter were determined so as to satisfy the optimum ignition conditions. Protection circuits for excessive dv/dt and di/dt for the SCR were also analyzed and the results were compared with the observed results, which facilitate selection of the SCR and design of the protection circuit and the trigger circuit. Also, design of the DC.DC converter was simplified based on the analysis and experimental results of the behavior of the converter, An experimental, yet practical CDI system was built, which showed satisfactory performance in the laboratory and field tests. The results were also reported.

  • PDF

Performance Evaluation and Economic Analysis on the Integrated Small Hydro Power Generation Device Using a Discharged Water of Sewage Treatment Plant (하수처리장의 방류수를 이용한 일체형 발전장치의 성능평가 및 경제성 분석)

  • Park, Yoo-Sin;Kim, Ki-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.486-491
    • /
    • 2017
  • The water discharged from sewage treatment plants has been considered to be useless, due to itslack of economic utility for small hydro power generation. Considering that most sewage treatment facilities have a water head of less than 2 meters and their flow rate is constant, it is necessary to develop a small hydro power generation device capable of maintaining stable power generation and efficiency. This paper presents the development of anintegrated small hydro power generation system and presents its performance evaluation and results. Then, the economics and use of the system for practical applications are suggested. As a result, it is foundthat the generator efficiency is 92%, the electric energy produced is 10kWh and the economic efficiency, as described by the B/C ratio,is 1.0 or more. Particularly, if the operating level of the generation device is maintained at 80% or more of the rated power, it is possible to secure its economic efficiency and, after 23 years, the investment cost will bereturned. The integrated hydro power generation device is expected to have a positive effect not only in terms of the water discharged from the sewage treatment plant, but also in terms of facilities capable of securing similar flow characteristics.

A Study on the Development of the Engine Room Fan Control System and ERFCS Algorithm for Ships Energy Saving (선박 에너지 절감을 위한 기관실 팬 제어 시스템 구축 및 알고리즘에 관한 연구)

  • Kang, Young-Min;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.642-648
    • /
    • 2015
  • Recently, there have been many studies pertaining to reducing energy consumption on ships. As part of those studies, the energy consumption of ships can be reduced by understanding and controlling the varying loads, excluding fixed loads. In existing ships, engine room fans are usually operated based on the actual experience of the crew without any special guidelines. To realize energy reduction, we investigate the characteristics of engine-room fans, and we propose an energy-management system called the engine room fan control system (ERFCS) and the ERFCS algorithm. The ERFCS controls the fan speed depending on the temperature and pressure, where one to four fans are operated depending on changes in the load. In addition, the minimum rotation speed of the engine-room fan was limited to 50% to prevent the surging phenomenon, which is due to fan damage or low pressure resulting from mechanical friction or heating at low fan speeds. We develop a fan control system simulation model using LabVIEW that is based on the proposed algorithm and ISO 8861. Finally, we perform simulations to confirm that operation of the proposed fan control system is possible using only 46.4% of the power required by the existing method.