• Title/Summary/Keyword: 정, 동적 해석

Search Result 164, Processing Time 0.025 seconds

A Test Study on the Static/Dynamic Response of PC Structures According to the Connection Method and Damage Degree of PC Concrete Structures for Rapid Application of PC Concrete Construction Around Railway Stations (철도정거장 주변 PC 콘크리트 급속 시공 적용을 위한 PC 콘크리트 구조물 연결 방법 및 손상 정도에 따른 PC 구조물 정적/동적 응답에 대한 실험적 연구)

  • Park, Chang-Jin;Jeong, Han-Jung;Park, Yong-Gul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.53-60
    • /
    • 2020
  • In this study, smart precast-in-place concrete, such as continuity with Precast any technology that can be the Application of Building Structures and railway stations, civil structures. After the same way in the field installation design based on the criteria railways and derived the right section, through the Static and Dynamic Response Analysis. Dynamic sensor and the triaxial acceleration measured by attaching the sensor acceleration response according to the extent of the damage of Precast Panel Structures and mode of Precast Structures, by comparing the data. Data for the stability and improvement of the uncertainty in along a railroad and Future of Precast Panel Structures of time to replace. This is to use this data as basic data on damage prediction.

Modified Empirical Formula of Dynamic Amplification Factor for Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 수정 동적증폭계수 추정식)

  • Ma, Kuk-Yeol;Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.846-855
    • /
    • 2021
  • Eco-friendly and renewable energy sources are actively being researched in recent times, and of shore wind power generation requires advanced design technologies in terms of increasing the capacities of wind turbines and enlarging wind turbine installation vessels (WTIVs). The WTIV ensures that the hull is situated at a height that is not affected by waves. The most important part of the WTIV is the leg structure, which must respond dynamically according to the wave, current, and wind loads. In particular, the wave load is composed of irregular waves, and it is important to know the exact dynamic response. The dynamic response analysis uses a single degree of freedom (SDOF) method, which is a simplified approach, but it is limited owing to the consideration of random waves. Therefore, in industrial practice, the time-domain analysis of random waves is based on the multi degree of freedom (MDOF) method. Although the MDOF method provides high-precision results, its data convergence is sensitive and difficult to apply owing to design complexity. Therefore, a dynamic amplification factor (DAF) estimation formula is developed in this study to express the dynamic response characteristics of random waves through time-domain analysis based on different variables. It is confirmed that the calculation time can be shortened and accuracy enhanced compared to existing MDOF methods. The developed formula will be used in the initial design of WTIVs and similar structures.

Estimation of Longitudinal Dynamic Stability Derivatives for a Tailless Aircraft Using Dynamic Mesh Method (Dynamic Mesh 기법을 활용한 무미익 비행체 종축 동안정 미계수 예측)

  • Chung, Hyoung-Seog;Yang, Kwang-Jin;Kwon, Ky-Beom;Lee, Ho-Keun;Kim, Sun-Tae;Lee, Myung-Sup;Reu, Taekyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.232-242
    • /
    • 2015
  • For stealth performance consideration, many UAV designs are adopting tailless lambda-shaped configurations which are likely to have unsteady dynamic characteristics. In order to control such UAVs through automatic flight control system, more accurate estimation of dynamic stability derivatives becomes essential. In this paper, dynamic stability derivatives of a tailless lambda-shaped UAV are estimated through numerically simulated forced oscillation method incorporating dynamic mesh technique. First, the methodology is validated by benchmarking the CFD results against previously published experimental results of the Standard Dynamics Model(SDM). The dependency of initial angle of attack, oscillation frequency and oscillation magnitude on the dynamic stability derivatives of a tailless UAV configuration is then studied. The results show reasonable agreements with experimental reference data and prove the validity and efficiency of the concept of using CFD to estimate the dynamic derivatives.

Dynamic Analysis MCFC for Mass Power Generation System (대용량 연료전지 발전 시스템용 용융탄산염 연료전지 동적 특성 해석)

  • Yoon, Hye-Min;Jung, Song-Yi;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.254-256
    • /
    • 2010
  • 본 논문에서는 대용량 연료전지 시스템용 용융탄산염 연료전지 (Molten Carbonate Fuel Cell, MCFC)의 동특성 해석을 한다. MCFC 시스템 정상 운전 시 출력변화에 따른 전력변화율, 장시간 운전 시 출력의 변화, 운전 중단 시 예열 온도 측면에 관한 해석을 수행하고, 해석한 결과는 MATLAB Simulink를 통해 타당성을 검증한다.

  • PDF

On the Oil Film Behaviors of Engine Bearing Considering Crankshaft Misalignment (크랭크축 경사도를 고려한 엔진 베어링의 유막거동에 관한 연구)

  • Kim, Han-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3119-3124
    • /
    • 2010
  • The purpose of this paper is to analyze dynamic behaviors of the oil film thickness and engine bearings in both aligned and misaligned operation conditions of a crankshaft using computer simulation techniques. A crankshaft as an elastic body is modeled for a misaligned crankshaft which is very important design parameter of the film thickness and engine bearings. In this analysis, a dynamic characteristic of a minimum oil film is analyzed based on the elastohydrodynamic lubrication theory. The boundary conditions for analyzing the film behaviors include non-linear constraint forces and bending moments in engine bearings. The more expedient model of an engine bearing is extended to consider the effect of crankshaft misalignment. The computed results indicate that the minimum oil film thickness that causes a major influence on the performance of engine bearings has showed a decrease of 16% to 24% for the misaligned crankshaft compared with an aligned crankshaft. The computed results show that the misalignment of a crankshaft inevitably brings the reduction of minimum oil film thickness and this may increase the failure of a bearing. These results as design parameters are very useful for a bearing designer as a firm reference data of an automotive engine.

Parametric Study on Earthquake Responses of Soil-structure Interaction System by Substructure Method (부분구조법에 의한 지반-구조물상호작용시스템의 지진응답 매개변수 연구)

  • 박형기;조양희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • In the dynamic soil-structure interaction(SSI) analysis, numerous uncertain parameters are involved. They include the uncertainties in the definition of input motions, modeling of soil-structure interaction systems. analysis techniques, etc. This paper presents the results of parametric studies of the seismic responses of a reactor containment structure built on the viscoelastic layered soil. Among the numerous parameter, this study concentrates on the effects of definition point of the input motion, embedment of structure to the base soil, thickness of the top soil layer, and rigidity of the base soil. The substructure method using frequency independent impedances is adopted. The method is based on the mode superposition method in time domain using the composite modal damping values of th SSI system computed from the ratio of dissipated energy to the strain energy for each model. From the study results, the sensitivity of each parameter on the earthquake responses has been suggested for the practical application of the substructure method of SSI analysis.

  • PDF

Effect of Nonlinear Analysis Procedures for Seismic Responses of Reinforced Concrete Wall Structure (철근콘크리트 벽체구조물의 지진응답에 대한 비선형 해석기법의 영향)

  • Song, Jong-Keol;Jang, Dong-Hui;Chung, Yeong-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.659-675
    • /
    • 2006
  • Recently, significant progress has been made in performance-based engineering methods that rely mainly on nonlinear static seismic analysis procedures. The Capacity Spectrum Method (CSM) and the Displacement Coefficient Method (DCM) are the representative nonlinear static seismic analysis procedures. In order to evaluate the applicability of the procedures to the seismic evaluation and design process of new and existing structures, the accuracy of both CSM and DCM should be evaluated in advance. The accuracy of seismic responses by the nonlinear static procedures is evaluated in comparison with the shaking table test results for the structural wall specimen subjected to the far field and near field earthquakes. Also conducted are comparative studies where the shaking table test results are compared with those from nonlinear dynamic analysis procedures, i.e., Single-Degree-of-Freedom (SDOF), equivalent SDOF and Multi-Degree-of-Freedom (MDOF) systems.

A Study on the Dynamic Characteristics of Polydyne cam Valve Train (폴리다인 캠 밸브 트레인의 동적 특성에 관한 연구)

  • You, Hwan-Shin;Chun, Dong-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.441-448
    • /
    • 2011
  • It is very important that establishing the valve train equations and representing the behavior of the valve train parts. To maintain the specific efficiency of running engine, the cam profile of valve train has more specific influence on the adequate behavior of the valve train than a valve clearance, heat-resistance and durability of parts. The polynomial cam, the multipol cam and polydyne cam profie are widely used to represent cam behaviour. In this study, using polydyne cam design profile equations which is more adequate for representing high speed engine, the geometrical modeling and mathmatical variable analysis are established to analysis the valve behaviour.

Correction of Pseudo-Dynamic Test by Equivalent Energy Compensation (등가에너지 보상을 통한 유사동적 실험의 보정)

  • Kim, Nam Sik;Lee, Sang Soon;Chung, Woo Jung;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.77-85
    • /
    • 1992
  • The Pseudo-dynamic test is a new experimental technique for simulating the earthquake response of structures or structural components in the time domain. It is especially efficient for testing specimens that are too large, heavy or strong to be tested on a shaking table. But, in general, the responses obtained in the Pseudo-dynamic test can be distorted by the experimental errors inevitably during control and measurement procedures. The studies are to investigate the effects of the experimental errors on the Pseudo-dynamic responses and apply a correction method to the Pseudo-dynamic testing algorithm. It is shown that the corrected responses using the equivalent energy compensation method are in a good correlation with the theoretical ones. Thus, the corrected Pseudo-dynamic responses could be reliable for evaluating the seismic performance of structural systems.

  • PDF

Development of Equations for Dynamic Design Loads of Sphere Type LNG Tank with Cylindrical Extension (원통 확장부를 갖는 구형 LNG 탱크의 동적 설계하중 산출식 개발)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.262-267
    • /
    • 2017
  • The number of shops needed for the fabrication of a sphere type cargo tank for an LNG carrier is proportional to the size of the tank to be constructed. Due to the limitations of facility investment, it is difficult to fabricate various size tanks with a perfectly spherical shape in the (factory). An efficient method of increasing the capacity of the cargo tank is to extend the conventional sphere type LNG tank vertically by inserting a cylindrical shell structure. In this study, equations for the dynamic pressure distribution due to horizontal acceleration are derived for a sphere type LNG tank with central extension. The derived equations can be easily applied to the design and structural assessment of a sphere type LNG tank with central extension. Furthermore, the results of this study can be combined with the static design loads previously reported by Shin & Ko [9], in order to establish a simplified analysis method which enables a precise initial estimate to be obtained, thereby obviating the need for a time consuming finite element analysis.