• 제목/요약/키워드: 접촉 열전도재

검색결과 4건 처리시간 0.022초

접촉열전도재를 도포한 접촉열저항 특성연구 (Characterization of Thermal Contact Resistance Doped with Thermal Interface Material)

  • ;;;문병준;이선규
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.943-950
    • /
    • 2013
  • This paper describes the thermal contact resistance and its effect on the performance of thermal interface material. An ASTM D 5470 based apparatus is used to measure the thermal interface resistance. Bulk thermal conductivity of different interface material is measured and compared with manufacturers' data. Also, the effect of grease void in the contact surface is investigated using the same apparatus. The flat type thermal interface tester is proposed and compared with conventional one to consider the effect of lateral heat flow. The results show that bulk thermal conductivity alone is not the basis to select the interface material because high bulk thermal conductivity interface material can have high thermal contact resistance, and that the center voiding affects the thermal interface resistance seriously. On the aspect of heat flow direction, thermal impedance of the lateral heat flow shows higher than that of the longitudinal heat flow by sixteen percent.

전자부품의 방열방향에 따른 접촉열전도 특성 (Characterization of a Thermal Interface Material with Heat Spreader)

  • 김정균;;이선규
    • 한국정밀공학회지
    • /
    • 제27권1호
    • /
    • pp.91-98
    • /
    • 2010
  • The increasing of power and processing speed and miniaturization of central processor unit (CPU) used in electronics equipment requires better performing thermal management systems. A typical thermal management package consists of thermal interfaces, heat dissipaters, and external cooling systems. There have been a number of experimental techniques and procedures for estimating thermal conductivity of thin, compressible thermal interface material (TIM). The TIM performance is affected by many factors and thus TIM should be evaluated under specified application conditions. In compact packaging of electronic equipment the chip is interfaced with a thin heat spreader. As the package is made thinner, the coupling between heat flow through TIM and that in the heat spreader becomes stronger. Thus, a TIM characterization system for considering the heat spreader effect is proposed and demonstrated in detail in this paper. The TIM test apparatus developed based on ASTM D-5470 standard for thermal interface resistance measurement of high performance TIM, including the precise measurement of changes in in-situ materials thickness. Thermal impedances are measured and compared for different directions of heat dissipation. The measurement of the TIM under the practical conditions can thus be used as the thermal criteria for the TIM selection.