• Title/Summary/Keyword: 접촉 센서

Search Result 574, Processing Time 0.024 seconds

Development of an Intelligent Hexapod Walking Robot (지능형 6족 보행 로봇의 개발)

  • Seo, Hyeon-Se;Sung, Young-Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.124-129
    • /
    • 2013
  • Hexapod walking robots are superior to biped or quadruped ones in terms of walking stability. Therefore hexapod robots have the advantage in performing intelligent tasks based on walking stability. In this paper, we propose a hexapod robot that has one fore leg, one hind leg, two left legs, and two right legs and can perform various intelligent tasks. We build the robot by using 26 motors and implement a controller which consists of a host PC, a DSP main controller, an AVR auxiliary controller, and smart phone/pad. We show by several experiments that the implemented robot can perform various intelligent tasks such as uneven surface walking, tracking and kicking a ball, remote control and 3D monitoring by using data obtained from stereo camera, infrared sensors, ultra sound sensors, and contact sensors.

The User Identification System using the ubiFloor (유비플로어를 이용한 사용자 인증 시스템)

  • Lee Seunghun;Yun Jaeseok;Ryu Jeha;Woo Woontack
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.4
    • /
    • pp.258-267
    • /
    • 2005
  • We propose the ubiFloor system to track and recognize users in ubiquitous computing environments such as ubiHome. Conventional user identification systems require users to carry tag sensors or use camera-based sensors to be very susceptible to environmental noise. Though floor-type systems may relieve these problems, high cost of load cell and DAQ boards makes the systems expensive. We propose the transparent user identification system, ubiFloor, exploiting user's walking pattern to recognize the user with a set of simple ON/OFF switch sensors. The experimental results show that the proposed system can recognize the 10 enrolled users at the correct recognition rate of $90\%$ without users' awareness of the system.

High-k 물질의 적층을 통한 고신뢰성 EIS pH 센서

  • Jang, Hyeon-Jun;Kim, Min-Su;Jeong, Hong-Bae;Lee, Yeong-Hui;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.129-129
    • /
    • 2011
  • ISFET (ion sensitive field effect transistor)는 용액 중의 각종 이온 농도를 측정하는 반도체 이온 센서이다. ISFET는 작은 소자 크기, 견고한 구조, 즉각적인 반응속도, 기존의 CMOS공정과 호환이 가능하다는 장점이 있다. ISFET의 기본 구조는 기존의 MOSFET (metal oxide semiconductor field effect transistor)에서 고안되었으며, ISFET는 기존의 MOSFET의 게이트 전극 부분이 기준전극과 전해질로 대체되어진 구조를 가지고 있다. ISFET소자의 pH 감지 메커니즘은 감지막의 표면에서 pH용액 속의 이온들이 감지막의 표면에서 속박되어 막의 표면전위의 변화를 유발하는 것을 이용한다. 그 결과, ISFET의 문턱전압의 변화를 일으키게 되고 드레인 전류의 양 또한 달라지게 된다. ISFET의 높은 pH감지능력을 얻기 위하여 높은 high-k물질 들이 감지막으로서 연구되었다. Al2O3와 HfO2는 높은 유전상수, non-ideal 효과에 대한 immunity 그리고 높은 pH 감지능력 등 많은 장점을 가지고 있는 물질로 알려졌다. 본 연구에서는, SiO2/HfO2/Al2O3 (OHA) 적층막을 이용한 EIS (electrolyte- insulator-silicon) pH센서를 제작하였다. EIS구조는 ISFET로의 적용이 용이하며 ISFET보다 제작 방법과 소자 구조가 간단하다는 장점이 있다. HfO2은 22~25의 높은 유전상수를 가지며 높은 pH 감지능력으로 인하여 감지막으로서 많은 연구가 이루어지고 있는 물질이다. 하지만 HfO2의 물질이 가진 고유의 특성상 화학적 용액에 대한 non-ideal 효과는 다른 금속계열 산화막에 비하여 취약한 모습을 보인다. 반면에 Al2O3의 유전상수는 HfO2보다 작지만 화학용액으로 인한 손상에 대하여 강한 immunity가 있는 재료이다. 이러한 물질들의 성질을 고려하여 OHA의 새로운 감지막의 적층구조를 생각하였다. 먼저 Si과 high-k물질의 양호한 계면상태를 이루기 위하여 5 nm의 얇은 SiO2막을 완충막으로서 성장시켰다. 다음으로 높은 유전상수를 가지고 있는 8 nm의 HfO2을 증착시킴으로서 소자의 물리적 손상에 대한 안정성을 향상시켰다. 최종적으로 화학용액과 직접적인 접촉이 되는 부분은 non-ideal 효과에 강한 Al2O3을 적층하여 소자의 화학적 손상에 문제점을 개선시켰다. 결론적으로 감지막의 적층 모델링을 통하여 각각의 high-k 물질이 가진 고유의 특성에 대한 한계점을 극복함으로써 높은 pH 감지능력뿐만 아니라 신뢰성 있는 pH 센서가 제작 되었다.

  • PDF

Design of USN Communication Protocol Using Individual Chaotic Systems (개별 혼돈 시스템을 이용한 USN 통신 프로토콜 설계)

  • Yim, Geo-Su
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.528-533
    • /
    • 2015
  • In the construction of USN environment, the implementation of a safe sensor network using wireless communications can be said to be the most important factor in the entire system. Although USN communication uses wireless communications to enhance accessability and non-contact capability, this results in the security vulnerability, thus endangering the system. In this regard, we propose a security protocol that can be effectively applied to USN, a multi-sensor network. The proposed protocol is a method using an individual chaotic system, and it is a security protocol to synchronize the main chaotic system mounted on each sensor and prepared key values into the initial values, and to communicate with the use of the synchronized values as symmetric keys. The communication protocol proposed in this paper is expected to yield good results as a new method to resolve security problems of USN and program capacity limitations of sensor nodes if subsequent studies continue to be carried out.

Non-Contact Vital Signal Sensor Based on Impedance Variation of Resonator (공진기의 임피던스 변화에 근거한 비접촉 생체 신호 센서)

  • Kim, Kee-Yun;Kim, Sang-Gyu;Hong, Yunseog;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.813-821
    • /
    • 2013
  • In this paper, a vital signal sensor based on impedance variation of resonator is presented. Proposed vital signal sensor can detect the vital signal, such as respiration and heart-beat signal. System is composed of resonator, oscillator, surface acoustic wave (SAW) filter, and power detector. The cyclical movement of a dielectric such as a human body, causes the impedance variation of resonator within the near-field range. So oscillator's oscillation frequency variation is effected on resonator's resonant frequency. SAW filter's skirt characteristic of frequency response can be transformed a small amount of frequency deviation to a large variation. Aim to enhance the existing sensor detection range, proposed sensor operates in 870 MHz ISM band, and detect respiration and heart-beat signal at distance of 120 mm.

Development of wheel width and tread acquisition algorithm using non-contact treadle sensor (무접점 답판 센서를 사용한 차량 바퀴의 윤폭 / 윤거 획득 알고리즘 개발)

  • Seo, Yeon-Gon;Lew, Chang-Guk;Lee, Bae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.627-634
    • /
    • 2016
  • Vehicle classification system in domestic tollgates is usually to use treadle sensor for calculating wheel width and tread of the vehicle. due to the impact that occurs when the wheels of the vehicle contact, treadle sensor requires high durability. recently, KHC(Korea Highway Corporation) began operating high-speed lane for cargo truck. high-speed cargo truck generate more impact the design criteria of previous treadle. therefore, an increase in the maintenance and management costs of the treadle damage is concerned. In this paper, we propose an algorithm for obtaining optimal wheel width and tread using non-contact treadle sensor that been improved durability from physical impacts. for the verification of the proposed algorithm, a field test was performed using 1/2/3/6 class vehicles based on the KHC's classification criteria. through this experiments, maximum error of the width and the tread is each ${\pm}2cm$ and ${\pm}8cm$, also the accuracy was measured as 98%, 97% or more, and proved that the proposed algorithm valid on to apply to the vehicle classification system.

A Study on Coating Film Thickness Measurement in vehicle Using Eddy Current Coil Sensor (와전류 코일 센서를 통한 차량용 코팅막 측정에 관한 연구)

  • Park, Hwa-Beom;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1131-1138
    • /
    • 2019
  • The importance of coatings has been increasing for different purposes such as prevention of static electricity of auto parts or products, improvement of abrasion and corrosion resistance, and enhancement of esthetics. As a method for measuring the thickness of a coating film, a contact method with probe is commonly used. However, it is problematic that accuracy of the sensor is degraded due to sensor output distortion or load phenomenon, which is caused by a change in magnetic permeability of the core. In this study, we propose a method to reduce the measurement error of the coating film by applying the optimized circuit design and the thickness measurement algorithm to the problems caused by the nonlinear characteristics. The tests result which have been taken with different thickness coating samples show that the measurement accuracy is within ${\pm}2%$.

Upper Limb Motion Detection Including Fingers Using Flex Sensors and Inertial Sensors (휘어짐센서와 관성센서를 이용한 손가락을 포함한 상지 운동 검출)

  • Kim, Yeon-Jun;Yoo, Jae-Ha;Kim, Dong-Yon;Kim, Soo-Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.101-106
    • /
    • 2020
  • The utilization of virtual reality is increasing not only in games but also in medical care such as rehabilitation. Due to the convenience, the motion of the upper limb is detected using a non-contact method using video or a handheld type mouse, etc. In this paper, we implemented a glove which can measure finger movements and upper limb movements by using flex sensors whose resistance value changes according to the degree of folding and inertial sensors which can obtain direction information in space. We showed the upper arm movements including finger movements with signals obtained from the implemented glove on the open software platform, Processing. The sensitivity of each finger movement was 0.5deg, and the sensitivity of the upper limb motion was 0.6deg.

A Study on the Development of In-Socket Pressure Change Measurement Sensor for Estimation Locomotion Intention of Intelligent Prosthetic leg User (지능형 대퇴의족 사용자의 보행 의도 추정을 위한 소켓 내 압력 변화 측정 센서 개발에 관한 연구)

  • Park, Na-Yeon;Eom, Su-Hong;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.249-256
    • /
    • 2022
  • The prosthetic leg is a device that performs walking instead of a amputated lower limb, and require a change in locomotion mode by providing the user's intention to respond to a discontinuous locomotion environment. Research has been conducted to detect the users' intentions through biomechanical features inside the socket that directly contacts the cut site in demand for natural locomotion mode changes without external control equipment. However, there is still a need for a sensor system that is suitable for the internal environment of the main body and socket of the cut site. Accordingly, this paper proposed a film-type sensor system that is suitable for the main body characteristics of the cut site, is not affected by the temperature and humidity conditions inside the socket, and is easy to manufacture in various sizes. The proposed sensor is manufactured base on Velostat film and takes into account the pressure measurement characteristics that vary with size. Through the experiment, the change in the internal pressure of the socket due to the intentional posture performance of the wearer was measured, and the possibility of detecting the intention to change the locomotion mode was confirmed.

Non-Contact Sensing Method using PT Symmetric Circuit with Cross-Coupled NDR Circuits (크로스-결합구조의 부성 미분 저항 회로를 이용한 페리티-시간 대칭 구조의 비접촉 센서 구동 회로에 대한 연구)

  • Hong, Jong-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.10-16
    • /
    • 2021
  • This paper proposes a model that considers the parity-time symmetric structure as a state detection circuit for sensor applications using a stretchable inductor. In particular, to obtain a more practical computer simulation result, the stretchable inductor model was applied to this study model by referring to previously reported experimental results. The resistance component and phase component were controlled through the negative differential resistance circuit used in this study. In addition, the imbalance of the circuit caused by a change in the characteristics of the stretchable inductor could be compensated for using a negative differential resistance circuit. In particular, an analysis of the frequency characteristics of the sensor driving circuit of the parity-time symmetric structure proposed in this study confirmed that the Q-factor could be increased up to 20 times compared to the conventional resonant circuit.