• Title/Summary/Keyword: 접촉 면적

Search Result 356, Processing Time 0.025 seconds

Effect of Surface Area of Soybean Oil and Lard on the Thermooxidative Stability (대두유와 돈지의 가열산화 안정성에 미치는 표면적의 영향)

  • Kim, In-Hwan;Kim, Young-Soon;Choi, Yang-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.781-786
    • /
    • 1998
  • To assess effect of surface area on the oxidative stability in thermooxidative system, soybean oil and lard with different surface area $(0.04{\;}cm^2/g,{\;}0.08{\;}cm^2/g,{\;}0.12{\;}cm^2/g{\;}and{\;}0.16{\;}cm^2/g)$ were heated 8 hrs/day at $185^{\circ}C$. The iodine values of soybean oil heated for 64 hrs with surface area of $0.12{\;}cm^2/g$ and $0.16{\;}cm^2/g$ were 113.1 and 116.9, while those of the oil heated for the same length time with surface area of $0.04{\;}cm^2/g$ and $0.08{\;}cm^2/g$ were 126.4 and 125.9, respectively. The same trend was observed in lard, but less markedly than in soybean oil. The polar lipid content, dielectric constant and refractive index of soybean oil and lard heated with surface area above $0.12{\;}cm^2/g$ significantly increased as the heating time increased, while those of the oil heated with surface area below $0.08{\;}cm^2/g$ slowly increased as the heating time increased. On the other hand, the conjugated diene content of soybean oil heated with surface area above $0.12{\;}cm^2/g$ oil increased as the heating time increased while ratio of linoleic acid to palmitic acid decreased as the heating time increased. However, the conjugated diene content and ratio of linoleic acid to palmitic acid of lard were not significantly different depending on the surface area. The results obtained from this investigation indicated that the thermooxidative stability of oil heated with surface area below $0.08\;}cm^2/g$ was better than that of oil heated with surface area above $0.12{\;}cm^2/g$ (P<0.05).

  • PDF

Exposure and Risk Assessments of Multimedia of Arsenic in the Environment (환경 중 비소의 매체통합 노출평가 및 위해성평가 연구)

  • Sim, Ki-Tae;Kim, Dong-Hoon;Lee, Jaewoo;Lee, Chae-Hong;Park, Soyeon;Seok, Kwang-Seol;Kim, Younghee
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.2
    • /
    • pp.152-168
    • /
    • 2019
  • The element arsenic, which is abundant in the Earth's crust, is used for various industrial purposes including materials for disease treatment and household goods. Various human activities, such as the disposal of soil waste, metal mining and smelting, and combustion of fossil fuels, have caused the pollution of the environment with arsenic. Recently, guidelines for arsenic in rice have been adopted by the Korean ministry of food and drug safety to prevent health risks based on rice consumption. Because of the exposure to arsenic and its accumulation in the human body through various channels, such as air inhalation, skin contact, ingestion of drinking water, and food consumption, integrated multimedia risk assessment is required to adopt appropriate risk management policies. Therefore, integrated human health risk assessment was carried out in this study using integrated exposure assessment based on multimedia (e.g., air, water, and soil) and multi-route (e.g., oral, inhalation, and dermal) scenarios. The results show that oral uptake via drinking water is the most common pathway of arsenic into the human body, accounting for 57%-96% of the total arsenic exposure. Among various age groups, the highest exposures to arsenic were observed in infants because the body weight of infants is low and the surface areas of infant bodies are large. Based on the results of the exposure assessment, the cancer and non-cancer risks were calculated. The cancer risk for CTE and RME is in the range of 2.3E-05 to 6.7E-05 and thus is negligible because it does not exceed the cancer probability of 1.0E-04 for all age groups. On the other hand, the cancer risk for RME varies from 6.4E-05 to 1.8E-04 and from 1.3E-04 to 1.8E-04 for infants and preschool children, exceeding the excess cancer risk of 1.0E-04. The non-cancer risks range from 5.4E-02 to 1.9E-01 and from 1.5E-01 to 6.8E-01, respectively. They do not exceed the hazard index 1 for all scenarios and all ages.

Numerical Analysis of Pile Foundation Considering the Thawing and Freezing Effects (융해-동결작용을 고려한 말뚝 기초에 관한 수치해석 연구)

  • Park, Woo-Jin ;Park, Dong-Su;Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.51-63
    • /
    • 2023
  • Numerical analysis was conducted to determine the effect of soil behavior by thawing and freezing of seasonal frozen soil on pile foundations. The analysis was performed using the finite element method (FEM) to simulate soil-pile interaction based on the atmosphere temperature change. Thermomechanical coupled modeling using FEM was applied with the temperature-dependent nonlinear properties of the frozen soil. The analysis model cases were applied to the MCR and HDP models to simulate the elastoplastic behavior of soil. The numerical analysis results were analyzed and compared with various conditions having different length and width sizes of the pile. The results of the numerical analysis showed t hat t he HDP model was relat ively passive, and t he aspect and magnit ude of t he bearing capacit y and displacement of the pile head were similar depending on the length and width of the pile conditions. The vertical displacement of the pile head by thawing and freezing of the ground showed a large variation in displacement for shorter length conditions. In the MCR model, the vertical displacement appeared in the maximum thaw settlement and frost heaving of 0.0387 and 0.0277 m, respectively. In the HDP model, the vertical displacement appeared in the maximum thaw settlement and frost heaving of 0.0367 and 0.0264 m, respectively. The results of the pile bearing capacity for the two elastoplastic models showed a larger difference in the width condition than the length condition of the pile, with a maximum of about 14.7% for the width L condition, a maximum of about 5.4% for M condition, and a maximum of about 5.3% for S condition. The significance of the effect on the displacement of the pile head and the bearing capacity depended on the pile-soil contact area, and the difference depended on the presence or absence of an active layer in the soil and its thickness.

Effects of Water Quality Improvement by Porosity of Fill Materials in Mattress/Filter System (Mattress/Filter 채움재의 공극률에 따른 하천수질 개선효과)

  • Ko, Jin Seok;Lee, Sung Yun;Heo, Chang Hwan;Jee, Hong Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.51-60
    • /
    • 2006
  • Water quality improvement in mattress/filter system using porous material like slag from industrial activity and zeolite that has been studied for environment improvement and pollution abatement is very useful in polluted stagnant stream channel. Slag is consisted of CaO, $SiO_2$, $Al_2O_3$ and $Fe_2O_3$. Slag with large specific surface area of porosity has been used such as sludge settling and adsorptive materials. Because slag is porous, it can be used for purification filter. As slag is used as filled materials of mattress/filter system and the system has good advantages for the waste water treatment, water recycling, and the improvement of water quality at the same time and so on. Because zeolite has much advantage of cation exchange, adsorption, catalyst and dehydration characteristics, It is used for environment improvement of livestock farms, treatment of artificial sewage and waste water, improvement of drinking water quality, radioactive waste disposal and radioactive material pollution control. In this study, according to verifying effects of water quality improvement of fill materials by porosity that 38.6%, 45.8% and 49.8% respectively in the stagnant stream channel, water quality monitoring of inflow and outflow was conducted on pH, DO, BOD, COD, SS, T-N and T-P. Mattress/filter system was able to accelerate water quality improvement by biofilter as waste water flows through gap of mattress/filter fill materials and by contact catalysis, absorption, catabolism by biofilm. Mattress/filter system used slag and zeolite forms biofilm easily and accelerates adsorption of organic matter. As a result, mattress/filter system increases water self-purification and accelerates water quality improvement available for stream water clean-up.

Risk Factor Analysis for Operative Death and Brain Injury after Surgery of Stanford Type A Aortic Dissection (스탠포드 A형 대동맥 박리증 수술 후 수술 사망과 뇌손상의 위험인자 분석)

  • Kim Jae-Hyun;Oh Sam-Sae;Lee Chang-Ha;Baek Man-Jong;Hwang Seong-Wook;Lee Cheul;Lim Hong-Gook;Na Chan-Young
    • Journal of Chest Surgery
    • /
    • v.39 no.4 s.261
    • /
    • pp.289-297
    • /
    • 2006
  • Background: Surgery for Stanford type A aortic dissection shows a high operative mortality rate and frequent postoperative brain injury. This study was designed to find out the risk factors leading to operative mortality and brain injury after surgical repair in patients with type A aortic dissection. Material and Method: One hundred and eleven patients with type A aortic dissection who underwent surgical repair between February, 1995 and January 2005 were reviewed retrospectively. There were 99 acute dissections and 12 chronic dissections. Univariate and multivariate analysis were performed to identify risk factors of operative mortality and brain injury. Resuit: Hospital mortality occurred in 6 patients (5.4%). Permanent neurologic deficit occurred in 8 patients (7.2%) and transient neurologic deficit in 4 (3.6%). Overall 1, 5, 7 year survival rate was 94.4, 86.3, and 81.5%, respectively. Univariate analysis revealed 4 risk factors to be statistically significant as predictors of mortality: previous chronic type III dissection, emergency operation, intimal tear in aortic arch, and deep hypothemic circulatory arrest (DHCA) for more than 45 minutes. Multivariate analysis revealed previous chronic type III aortic dissection (odds ratio (OR) 52.2), and DHCA for more than 45 minutes (OR 12.0) as risk factors of operative mortality. Pathological obesity (OR 12.9) and total arch replacement (OR 8.5) were statistically significant risk factors of brain injury in multivariate analysis. Conclusion: The result of surgical repair for Stanford type A aortic dissection was good when we took into account the mortality rate, the incidence of neurologic injury, and the long-term survival rate. Surgery of type A aortic dissection in patients with a history of chronic type III dissection may increase the risk of operative mortality. Special care should be taken and efforts to reduce the hypothermic circulatory arrest time should alway: be kept in mind. Surgeons who are planning to operate on patients with pathological obesity, or total arch replacement should be seriously consider for there is a higher risk of brain injury.

Estimation of Fresh Weight and Leaf Area Index of Soybean (Glycine max) Using Multi-year Spectral Data (다년도 분광 데이터를 이용한 콩의 생체중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Park, Jun-Woo;Kim, Tae-Yang;Kang, Kyung-Suk;Park, Min-Jun;Baek, Hyun-Chan;Park, Yu-hyeon;Kang, Dong-woo;Zou, Kunyan;Kim, Min-Cheol;Kwon, Yeon-Ju;Han, Seung-ah;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.329-339
    • /
    • 2021
  • Soybeans (Glycine max), one of major upland crops, require precise management of environmental conditions, such as temperature, water, and soil, during cultivation since they are sensitive to environmental changes. Application of spectral technologies that measure the physiological state of crops remotely has great potential for improving quality and productivity of the soybean by estimating yields, physiological stresses, and diseases. In this study, we developed and validated a soybean growth prediction model using multispectral imagery. We conducted a linear regression analysis between vegetation indices and soybean growth data (fresh weight and LAI) obtained at Miryang fields. The linear regression model was validated at Goesan fields. It was found that the model based on green ratio vegetation index (GRVI) had the greatest performance in prediction of fresh weight at the calibration stage (R2=0.74, RMSE=246 g/m2, RE=34.2%). In the validation stage, RMSE and RE of the model were 392 g/m2 and 32%, respectively. The errors of the model differed by cropping system, For example, RMSE and RE of model in single crop fields were 315 g/m2 and 26%, respectively. On the other hand, the model had greater values of RMSE (381 g/m2) and RE (31%) in double crop fields. As a result of developing models for predicting a fresh weight into two years (2018+2020) with similar accumulated temperature (AT) in three years and a single year (2019) that was different from that AT, the prediction performance of a single year model was better than a two years model. Consequently, compared with those models divided by AT and a three years model, RMSE of a single crop fields were improved by about 29.1%. However, those of double crop fields decreased by about 19.6%. When environmental factors are used along with, spectral data, the reliability of soybean growth prediction can be achieved various environmental conditions.