• Title/Summary/Keyword: 접촉효율

Search Result 726, Processing Time 0.026 seconds

Design and development of non-contact locks including face recognition function based on machine learning (머신러닝 기반 안면인식 기능을 포함한 비접촉 잠금장치 설계 및 개발)

  • Yeo Hoon Yoon;Ki Chang Kim;Whi Jin Jo;Hongjun Kim
    • Convergence Security Journal
    • /
    • v.22 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • The importance of prevention of epidemics is increasing due to the serious spread of infectious diseases. For prevention of epidemics, we need to focus on the non-contact industry. Therefore, in this paper, a face recognition door lock that controls access through non-contact is designed and developed. First very simple features are combined to find objects and face recognition is performed using Haar-based cascade algorithm. Then the texture of the image is binarized to find features using LBPH. An non-contact door lock system which composed of Raspberry PI 3B+ board, an ultrasonic sensor, a camera module, a motor, etc. are suggested. To verify actual performance and ascertain the impact of light sources, various experiment were conducted. As experimental results, the maximum value of the recognition rate was about 85.7%.

Deep Learning-based Rail Surface Damage Evaluation (딥러닝 기반의 레일표면손상 평가)

  • Jung-Youl Choi;Jae-Min Han;Jung-Ho Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.505-510
    • /
    • 2024
  • Since rolling contact fatigue cracks can always occur on the rail surface, which is the contact surface between wheels and rails, railway rails require thorough inspection and diagnosis to thoroughly inspect the condition of the cracks and prevent breakage. Recent detailed guidelines on the performance evaluation of track facilities present the requirements for methods and procedures for track performance evaluation. However, diagnosing and grading rail surface damage mainly relies on external inspection (visual inspection), which inevitably relies on qualitative evaluation based on the subjective judgment of the inspector. Therefore, in this study, we conducted a deep learning model study for rail surface defect detection using Fast R-CNN. After building a dataset of rail surface defect images, the model was tested. The performance evaluation results of the deep learning model showed that mAP was 94.9%. Because Fast R-CNN has a high crack detection effect, it is believed that using this model can efficiently identify rail surface defects.

EPerformance of high-rate anaerobic sequencing batch reactor treating sewage sludge and food waste (연속 회분식 혐기성 공정을 이용한 하수슬러지와 음식물쓰레기의 혼합소화 거동 특성)

  • Kim, Hyun-Woo;Han, Sun-Kee;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.75-83
    • /
    • 2004
  • Temperature-phased anaerobic digestion (TPAD), anaerobic sequencing batch reactor (ASBR), and co-digestion technologies were combined together in order to overcome low efficiencies of conventional anaerobic sewage sludge digestion processes. In the performance, TPAD-ASBR process showed high VS removal efficiency over 60% up to the organic loading rate (OLR) of 2.7 g VS/L/d. The first-stage of TPAD-ASBR and control system played a most significant role in VS destruction and methane production. Methane production rate (0.79 l $CH_4/L/d$) of the system was higher than that (0.59 l $CH_4/L/d$) of the control system. The substrate characteristics of the sewage sludge, such as low VS concentration (1.5%, w/w) and biodegradability, were properly improved by the addition of food waste as a co-substrate, leading to more efficient VS removal and methane production. With several track studies, it was revealed that the independent solid retention time (SRT) of those systems prevented untreated particles from outflowing and also, extended the retention time of the active biomass for further degradation. Consequently, it was confirmed that the sequencing batch operation of the TPAD process using co-substrate was a promising alternative for the recycling of sewage sludge with low VS content.

  • PDF

Water Quality Variation and Removal Characteristics of Poliovirus by Biological Activated Carbon (BAC) and Ozone Treatment Process in Nakdong River. (낙동강 원수의 생물활성탄 및 오존처리공정에 따른 수질 변화 및 폴리오바이러스의 제거특성)

  • Jung Eun-Young;Park Hong-Ki;Lee You-Jung;Jung Jong-moon;Jung Mi-Eun;Hong Yong-Ki;Jang Kyoung-Lib
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.696-702
    • /
    • 2005
  • Ozonation is a disinfection technique of harmful mi-crobes commonly used in the treatment of drinking water. And Biological Activated Carbon (BAC) treatment also provides numerous benefits for drinking water utilities, including removal of micro- pollutants, improved treatment processes. The multiful-stage ozonation and BAC play roles as effective methods for removing several materials in raw water. Water quality variation in Nak dong river and the removal efficiency of viruses by ozonation-BAC process were investigated on pilot scale. During the period of survey, most of water quality parameters including $NH_{4}^{+}-N$ were highly improved after passing through the BAC. The removal efficiency of poliovirus type III in water treatment process using pilot-plant,$ 99.6\% $ of viruses were removed by pre-ozonation, sedimentation and sand filteration process, $ 100\% $ were removed after in BAC filteration step. In the removal survey of viruses by ozonation, ap-proximately $ 61.1\% $ or polioviruses were inactivated by ozone of 0.4 mg/l within 5 min. and $ 100\% $ were inactivated by ozone of 0.8 mg/l over 10 min.

Tribological Characteristics of C/C-SiC-Cu Composite and Al/SiC Composite Materials under Various Contact Conditions (접촉 조건에 따른 C/C-SiC-Cu복합재와 Al/SiC복합재의 마모 특성에 관한 연구)

  • Kim, Byung-Kook;Shin, Dong-Gap;Kim, Chang-Lae;Goo, Byeong-Choon;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.21-30
    • /
    • 2017
  • The surface temperature of disc brakes varies during braking, which can affect the friction and wear behavior of braking systems. In order to develop an efficient braking system, the friction and wear behaviors of brake materials need to be clearly understood. In this work, the friction and wear behavior of the C/C-SiC-Cu composite and the Al/SiC composite, which are used in disc braking systems, were investigated. Both the surface temperature and contact pressure were studied. A pin-on-reciprocating tribotester was used for this purpose, in order to control temperature and load. Results showed that the friction varied significantly with temperature and sliding distance. It was found that a transfer layer of compacted wear debris formed on the wear track of the two materials. These layers caused the surface roughness of the wear track to increase. The outcome of this work is expected to serve as a basis for the development of braking systems under various operating conditions.

Development of a Modular Magnetostrictive Transducer for Torsional Guided Wave Transduction in a Cylindrical Structure (원통형 구조물에서 비틀림 유도초음파 변환을 위한 모듈형 자기변형 트랜스듀서 개발)

  • Cho, Seung-Hyun;Park, Jae-Ha;Kwon, Hyu-Sang;Ahn, Bong-Young;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.427-435
    • /
    • 2009
  • Cylindrical structures such as pipes and shafts are widely used in various industrial facilities. Recently, researches on magnetostrictive transduction of torsional waves have been actively reported for the nondestructive evaluation of those cylindrical structures. However, the existing magnetostrictive patch transducer has somewhat inconvenient and time.consuming process like patch bonding to a structure since it should employ a magnetostrictive patch having strong magnetostriction. To overcome these limitations of the existing transducer, in this work, we develop a novel modular magnetostrictive transducer to generate and measure torsional waves to inspect a cylindrical structure. The proposed transducer can be applied as viscous liquid coupling with shear couplant or dry coupling without coupling media instead of patch bonding to a structure. We describe a detailed structure of the modular transducer and conduct some experiments to verify its performance.

Experimental Study on the Slip Coefficient with Member Type and Dimensions of High Tension Bolt Hole (부재 및 고장력볼트 구멍치수에 따른 미끄러짐계수의 실험적 연구)

  • Yang, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4277-4283
    • /
    • 2012
  • Slip coefficient, whose value is dependent on the condition of contact surface at the friction joint of high tension bolt, is determined by slip load. Because contact area affects slip load, contact area that varies with bolt hole size is also related to the slip coefficient. In this study, we manufactured 32 specimens and performed bending and tension tests in order to examine changes in slip coefficient and load with material type, bolt diameter, and size of bolt hole. Slip load of specimens with oversize bolt hole had strength that was more than 80% higher than the slip load of specimens with standard bolt hole, and it also exceeded the design slip strength. In addition, we observed significant correlation between net-section ratio and slip ratio of specimens with oversize and standard bolt hole. However, some differences between the specimens are thought to have been caused by reduction in initial axial force of high tension bolt, which is an important parameter of slip coefficient. It is self-evident that increased bolt hole size would lead to decrease in design strength as it reduces both slip coefficient and bolt axial force. Nevertheless, we suggest that some flexibility in regulation of bolt hole, as long as it does not threaten the structural stability, may be a positive factor in terms of workability and efficiency.

Internal Flow and Evaporation Characteristic inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface (수직 진동하는 소수성 표면 위 액적의 내부유동 및 증발특성 연구)

  • Kim, Hun;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.579-589
    • /
    • 2015
  • This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4.

Bacterial Community Structure of Food Wastewater Treatment System Combined with Rotating Biological Contactor and Tapered Aeration Reactor (회전접촉장치와 점감포기 반응조를 이용한 식품폐수 처리시설의 세균군집 구조)

  • Jeong, Soon-Jae;Nam, Ji-Hyun;Bae, Woo-Keun;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • A pilot-scale wastewater treatment plant combined with rotating biological contactor and tapered aeration reactors was operated with the wastewater discharged from a food factory for 5 months. The bacterial communities of this plant were investigated by terminal restriction fragment length polymorphism (T-RFLP) and phylogenetic analysis of 16S rRNA genes. In spite of high concentration of nitrogen and phosphorus as well as organic carbon, removal efficiency of chemical oxygen demand, total nitrogen, and total phosphorus was 98%, 93%, and 95%, respectively. Bacterial community at the initial operation stage was clearly distinguished from that of the stable operation stage. The most predominant phylum in the sample of stable stage was Bacteroidetes. Major population of operation period was Haliscomenobacter, Sphaerotilus, and candidate division TM7, which were classified as filamentous bacteria. However, sludge bulking caused by these bacteria was not observed. The population that has a close relationship with Haliscomenobacter increased during the stable operation stage, emerging as the most predominant group. These results suggest that the filamentous bacteria participated in nutrient removal when using rotating biological contactor and tapered aeration reactor.

Dynamic Shear Behavior Characteristics of PHC Pile-cohesive Soil Ground Contact Interface Considering Various Environmental Factors (다양한 환경인자를 고려한 PHC 말뚝-사질토 지반 접촉면의 동적 전단거동 특성)

  • Kim, Young-Jun;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.5-14
    • /
    • 2024
  • PHC piles demonstrate superior resistance to compression and bending moments, and their factory-based production enhances quality assurance and management processes. Despite these advantages that have resulted in widespread use in civil engineering and construction projects, the design process frequently relies on empirical formulas or N-values to estimate the soil-pile friction, which is crucial for bearing capacity, and this reliance underscores a significant lack of experimental validation. In addition, environmental factors, e.g., the pH levels in groundwater and the effects of seawater, are commonly not considered. Thus, this study investigates the influence of vibrating machine foundations on PHC pile models in consideration of the effects of varying pH conditions. Concrete model piles were subjected to a one-month conditioning period in different pH environments (acidic, neutral, and alkaline) and under the influence of seawater. Subsequent repeated direct shear tests were performed on the pile-soil interface, and the disturbed state concept was employed to derive parameters that effectively quantify the dynamic behavior of this interface. The results revealed a descending order of shear stress in neutral, acidic, and alkaline conditions, with the pH-influenced samples exhibiting a more pronounced reduction in shear stress than those affected by seawater.