• Title/Summary/Keyword: 접촉응력해석

Search Result 347, Processing Time 0.028 seconds

A parametric study of bolt-nut joints by the method of finite element contact analysis (유한 요소 접촉 해석법에 의한 나사 체결부 설계 개선에 관한 연구)

  • 이병채;김영곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.353-361
    • /
    • 1989
  • A parametric study of load distribution in bolt-nut joints is performed by the method of finite element contact analysis. The contacting surface is assumed unbonded and frictionless. Multi-body contact analysis is performed in elastic region under the assumption of axi-symmetric stress state. Load acting on the first thread from the fastened plate is much greater than that on the other threads in the standard setting. But the load distribution is shown to be improved by making the center of contact force acting on the nut surface move outwards. Such a modification is possible by enlarging the gap between bolt shank and fastened plate or by inserting suitable washers. Shape modification of the standard nut by the making a groove and a step on the nut surface is also suggested, which results in almost uniform load distribution and considerable decrease in the maximum stress of the joint.

On the Slipping Phenomenon in Adhesive Complete Contact Problem (응착 완전 접촉 문제에서 접촉면 미끄럼 현상에 관한 고찰)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.147-152
    • /
    • 2020
  • This paper is within the framework of an adhered complete contact problem wherein the contact between a half plane and sharp edged indenter, both of which are elastic in character, is constituted. The eigensolutions of the contact shear and normal stresses, σrq and σq, respectively, are evaluated via asymptotic analysis. The ratio of σrqqq is investigated and compared with the coefficient of friction, μ, of the contact surface to observe the propensity to slip on the contact surface. Interestingly, there exists a region of |σθθ| ≥ |μ|. Thus, slipping can occur, although the problem is solved under the condition of an adhered contact without slipping. Given that a tribological failure potentially occurs at the slipping region, it is important to determine the size of the slipping region. This aspect is also factored in the paper. A simple example of the adhered contact between two elastically dissimilar squares is considered. Finite element analysis is used to evaluate generalized stress intensity factors. Furthermore, it is repeatedly observed that slipping occurs on the contact surface although the size of it is extremely small compared with that of the contacting squares. Therefore, as a contribution to the field of contact mechanics, this problem must be further explained logically.

Stress Measurement of Structural Member Using Piezoelectric Property (압전 특성을 이용한 구조물 부재의 응력측정)

  • Im, Eun Sang;Kim, Tea Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.103-108
    • /
    • 2007
  • A stress measurement method of structural member using piezoelectric property and electrostatic voltmeter is presented. The electric potentials of the surface of the piezoelectric element, which are proportional to the strain ${\varepsilon}$ on the structural member, are measured by an electrostatic voltmeter during load cycling. The stress ${\sigma}$ is calculated by this strain ${\varepsilon}$. Moreover, a stress distribution measurement tape which can be used for the stress distribution measurement along a specified line on the surface of structural member is developed, and the surface potential was measured by an electric static voltmeter of non-contact type. The applicability of the stress distribution measurement tape is examined through experiments using a notched specimen under cyclic loading. The measured distributions of x, y and xy are compared with those calculated by FEM analysis.

Micromechanical Analysis on Anisotropic Elastic Deformation of Granular Soils (미시역학을 이용한 사질토의 이방적 탄성 변형 특성의 해석)

  • 정충기;정영훈
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.99-107
    • /
    • 2004
  • Anisotropic characteristics of deformation are important to understand the particular behavior in the pre-failure state of soils. Recent experiments show that cross-anisotropic moduli of granular soils can be expressed by functions of normal stresses in the corresponding directions, which is closely linked to micromechanical characteristics of particles. Granular soils are composed of a number of particles so that the force-displacement relationship at each contact point governs the macroscopic stress-strain relationship. Therefore, the micromechanical approach in which the deformation of granular soils is regarded as a mutual interaction between particle contacts is one of the best ways to investigate the anisotropic elastic deformation of soils. In this study, a numerical program based on the theory of micromechanics is developed. Generalized contact model for the irregular contact surface of soil particles is adopted to represent the force-displacement relationship in each contact point far the realistic prediction of anisotropic moduli. To evaluate the model parameters, a set of analytical solutions of anisotropic elastic moduli is derived in the isotropic stress condition. A detailed procedure to determine the model parameters is proposed with emphasis on the practical applicability of micromechanical program to analyze the elastic behavior of the granular soils.

Strength Analyses of New 2- and 3-Axis-Type Small Multiplying Gears in Dental Hand-Pieces (치과드릴 구동용 신 소형 2축 및 3축형 증속기어 강도특성 비교)

  • Kim, Cheol;Kim, Ju-Yeong;Lee, Jung-Ho;Kwak, Se-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1027-1032
    • /
    • 2012
  • Two types of very small multiplying gears and arrays have been developed for new dental hand-pieces, and the increased speed ratios, modules, number of teeth, gear diameters, and gear types were calculated based on the dynamics of the machinery. The contacting and bending strengths were evaluated for gear teeth with two design concepts using AGMA equations and finite element analyses, and the contacting stresses on teeth with and without DLC (diamond-like-carbon) coating layers were calculated. Fatigue and tension tests were performed to obtain an S-N curve, the Young's modulus, and the strength of the gear material, and these were utilized in the analyses. Slightly larger stresses were found for 2-axis-type gears than for other types of gears, and the S-N curves showed that a gear lifetime of 109 cycles was satisfied. The contacting stresses in gears coated with DLC were reduced by 30%. A new prototype model of a hand-piece with small gears was successfully fabricated and tested.

Structural Analysis and Measurement of Turbopump Casings (터보펌프 케이징의 구조해석 및 측정)

  • Yun, Seok-Hwan;Jeon, Seong-Min;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.174-180
    • /
    • 2006
  • The present paper describes transient thermal and mechanical analyses of a lox/kerosene type turbopump in a LRE(Liquid Rocket Engine). Turbopumps are used to pressurize propellants to achieve higher specific impulse of LRE. The turbopump under development has been designed and verified by structural analyses using finite element methods. Some parts of the turbopump operate under cryogenic environments, while the others work under ambient and high temperature environments. Therefore, numerical analysis at a turbopump system level is essential. In this study, casing assemblies of lox pump and fuel pump were analyzed to determine strength test and air-tightness test conditions. Also, some operational stress and strains of fuel pump casings were measured and analyzed. Based on these results, stress concentration of fuel pump casings during the operation could be successfully predicted.

  • PDF

3D Finite Element Simulation of Pellet-Cladding Mechanical Interaction (3차원 유한요소를 이용한 핵연료와 피복관 기계적 거동 해석)

  • Seo, Sang Kyu;Lee, Sung Uk;Lee, Eun Ho;Yang, Dong Yol;Kim, Hyo Chan;Yang, Yong Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.437-447
    • /
    • 2016
  • In a nuclear power plant, the fuel assembly, which is composed of fuel rods, burns, and the high temperature can generate power. The fuel rod consists of pellets and a cladding that covers the pellets. It is important to understand the pellet-cladding mechanical interaction with regard to nuclear safety. This paper proposes simulation of the PCMI. The gap between the pellets and the cladding, and the contact pressure are very important for conducting thermal analysis. Since the gap conductance is not known, it has to be determined by a suitable method. This paper suggests a solution. In this study, finite element (FE) contact analysis is conducted considering thermal expansion of the pellets. As the contact causes plastic deformation, this aspect is considered in the analysis. A 3D FE module is developed to analyze the PCMI using FORTRAN 90. The plastic deformation due to the contact between the pellets and the cladding is the major physical phenomenon. The simple analytical solution of a cylinder is proposed and compared with the fuel rod performance code results.

Contact Pressure around the Buried Rigid pipe under Embankment (성토하에 매설된 강성관의 접촉응륜력)

  • 안중선;강병희
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.7-16
    • /
    • 1985
  • The behaviour of buried rigid pipe under embankment is analysed by a linear finite element program to study the influence of variation of the geometry of soil-conduit pipe system and elastic modulus of soil on the pipe response. The geometry of the system considered includes the thickness of pipe, the height of embankment, and the width arid the depth of trench. The normal contact pressure distribution around the pipe and the vertical load on the pipe are modelled by a multiple linear regression. And the vertical load on the pipe computed by Marston-Spangles Theory Is generally larger than that by finite element analysis. The settiement ratio in Marston-Spangler Theory is found to be variable for various for various of all factors mentioned above.

  • PDF

Load Distribution, Contact and Fatigue Life Analysis for Ball Bearing of Under Moment Load (모멘트 하중을 고려한 볼베어링의 하중분배, 접촉 및 피로수명 해석)

  • Kim, Young-Kuk;Moon, Seok-Man;Kim, Tae-Wan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.162-166
    • /
    • 2011
  • This study is aimed to predict the fatigue life for bearings under combined radial, thrust and moment load. In order to do this, a series of simulation such as bearing load distribution, initial surface stress, subsurface stress and fatigue analysis is needed. And using the bearing's material fatigue property we can predict fatigue life for ball bearing.

Load Distribution, Contact and Fatigue Life Analysis of Pitch Bearing for Wind Turbine (풍력발전기용 피치베어링의 하중분배, 접촉 및 피로수명 해석)

  • Kim, Youngjin;Moon, Sukman;Cho, Yongjoo
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • This study is aimed to predict the fatigue life for pitch bearings under combined radial, thrust load and moment. In order to do this, a series of simulation such as bearing load distribution, initial surface stress, subsurface stress and fatigue analysis is needd. Fatigue life for pitch bearing can be predicted by using a bearing's material fatigue property.