• Title/Summary/Keyword: 접착에너지

Search Result 198, Processing Time 0.022 seconds

Haptic Simulation Algorithm for Tooth Scaling Training (치아 스케일링 훈련을 위한 햅틱 시뮬레이션 알고리즘)

  • Cho, Jae-Hyun;Kim, Jai-Hyun;Park, Jin-Ah
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.290-293
    • /
    • 2011
  • 치아 스케일링은 치아에 단단하게 결착된 치석을 제거하는 치과 시술로서 치아 우식 및 잇몸염증을 예방하는 중요한 시술이다. 특히 요즘에는 치료시간의 단축을 통한 효율성 증대의 목적으로 전기적 에너지를 미세한 진동에너지로 바꾸는 원리를 활용한 초음파 스케일링 기법이 많이 행해지고 있다. 하지만 치아 및 치석 확보에 따른 어려움으로 인해 스케일링 시술을 충분히 훈련하기란 쉽지 않다. 본 논문에서는 사용자가 가상현실을 통해 시각 및 촉각 피드백을 받으며 초음파 스케일링 시술을 훈련할 수 있는 치아 스케일링 시뮬레이션을 위한 알고리즘을 제안한다. 치아, 치석 및 잇몸의 볼륨모델과 스케이러 팁을 구성하는 각 부문의 관통깊이를 이용한 햅틱 랜더링 기법을 적용하여 스케일러의 모양에 따른 햅틱 피드백을 생성하였다. 그리고 치아의 손상을 줄이기 위해 스케일러의 팁 부문이 치아 표면에 되도록 평형을 이루어야 한다는 점에 입각하여, 치석을 구성하는 복셀들의 치아 디스턴스필드 값 비교를 통해 치석과 치아 사이의 접착면을 추출하고 스케일러의 팁 부분과 충돌하는 추출된 집착면의 각도를 고려한 스케일링 알고리즘을 구현하였다. 또한 수동 스케일링과는 달리 초음파 스케일링은 초음파의 진동에너지에 의해 점진적으로 치아와 치석 사이의 결속력이 감소된다는 점에 착안하여 치아와 치석의 접착면을 구성하는 지점 사이의 거리에 따른 결속력 감쇠 모델을 고안하였다.

Theoretical Estimation of Interfacial Tension between Molten Polymers (용융 고분자간의 계면장력에 대한 이론적 예측)

  • Youngie Oh;Joseph D. Andrade;Mu Shik Jhon
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.210-216
    • /
    • 1979
  • A simple method to calculate the interfacial tension between two immiscible molten polymers has been developed. The theory is based on the significant structure theory of liquids. The energy of adhesion is expressed as a geometric mean of the cohesion energies multiplied by correction factor $({\Phi}12)$, ${\Delta}E_{12}={\Phi}_{12}\sqrt{{\Delta}E_{11}{\Delta}E_{22^{\circ}}$. In the calculation of ${\Delta}E_{11}\;and\;{\Delta}E_{22}$, a quasilattice of polymer chains has been assumed. It is assured that, besides the dispersion force, the polar force interactions between polymer constituent groups should be considered in the calculation of the interfacial tensions.

  • PDF

Effect of Co Interlayer on the Interfacial Reliability of SiNx/Co/Cu Thin Film Structure for Advanced Cu Interconnects (미세 Cu 배선 적용을 위한 SiNx/Co/Cu 박막구조에서 Co층이 계면 신뢰성에 미치는 영향 분석)

  • Lee, Hyeonchul;Jeong, Minsu;Kim, Gahui;Son, Kirak;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.41-47
    • /
    • 2020
  • The effect of Co interlayer on the interfacial reliability of SiNx/Co/Cu thin film structure for advanced Cu interconnects was systematically evaluated by using a double cantilever beam test. The interfacial adhesion energy of the SiNx/Cu thin film structure was 0.90 J/㎡. This value of the SiNx/Co/Cu thin film structure increased to 9.59 J/㎡.Measured interfacial adhesion energy of SiNx/Co/Cu structure was around 10 times higher than SiNx/Cu structure due to CoSi2 reaction layer formation at SiNx/Co interface, which was confirmed by X-ray photoelectron spectroscopy analysis. The interfacial adhesion energy of SiNx/Co/Cu structure decreased sharply after post-annealing at 200℃ for 24 h due to Co oxidation at SiNx/Co interface. Therefore, it is required to control the CoO and Co3O4 formation during the environmental storage of the SiNx/Co/Cu thin film to achieve interfacial reliability for advanced Cu interconnections.

Study on the Intermetallic Compound Growth and Interfacial Adhesion Energy of Cu Pillar Bump (Cu pillar 범프의 금속간화합물 성장과 계면접착에너지에 관한 연구)

  • Lim, Gi-Tae;Kim, Byoung-Joon;Lee, Ki-Wook;Lee, Min-Jae;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.17-24
    • /
    • 2008
  • Thermal annealing and electromigration test were performed at $150^{\circ}C$ and $150^{\circ}C,\;5{\times}10^4\;A/cm^2$ conditions, respectively, in order to compare the growth kinetics of intermetallic compound(IMC) in Cu pillar bump. The quantitative interfacial adhesion energy with annealing was measured by using four-point bending strength test in order to assess the effect of IMC growth on the mechanical reliability of Cu pillar bump. Only $Cu_6Sn_5$ was observed in the Cu pillar/Sn interface after reflow. However, $Cu_3Sn$ formed and grew at Cu pillar/$Cu_6Sn_5$ interface with increasing annealing and stressing time. The growth kinetics of total($Cu_6Sn_5+Cu_3Sn$) IMC changed when all Sn phases in Cu pillar bump were exhausted. The complete consumption time of Sn phase in electromigration condition was faster than that in annealing condition. The quantitative interfacial adhesion energy after 24h at $180^{\circ}C$ was $0.28J/m^2$ while it was $3.37J/m^2$ before annealing. Therefore, the growth of IMC seem to strongly affect the mechanical reliability of Cu pillar bump.

  • PDF

Evaluation of bonding state of tunnel shotcrete using impact-echo method - numerical analysis (충격 반향 기법을 이용한 숏크리트 배면 접착 상태 평가에 관한 수치해석적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.105-118
    • /
    • 2008
  • Shotcrete is one of the main support materials in tunnelling. Its bonding state on excavated rock surfaces controls the safety of the tunnel: De-bonding of shotcrete from an excavated surface decreases the safety of the tunnel. Meanwhile, the bonding state of shotcrete is affected by blasting during excavation at tunnel face as well as bench cut. Generally, the bonding state of shotcrete can be classified as void, de-bonded, or fully bonded. In this study, the state of the back-surface of shotcrete is investigated using impact-echo (IE) techniques. Numerical simulation of IE technique is performed with ABAQUS. Signals obtained from the IE simulations were analyzed at time, frequency, and time-frequency domains, respectively. Using an integrated active signal processing technique coupled with a Short-Time Fourier Transform (STFT) analysis, the bonding state of the shotcrete can be evaluated accurately. As the bonding state worsens, the amplitude of the first peak past the maximum amplitude in the time domain waveform and the maximum energy of the autospectral density are increasing. The resonance frequency becomes detectable and calculable and the contour in time-frequency domain has a long tail parallel to the time axis. Signal characteristics with respect to ground condition were obtained in case of fully bonded condition. As the ground condition worsens, the length of a long tail parallel to the time axis is lengthened and the contour is located in low frequency range under 10 kHz.

  • PDF

A Study on the Performance Evaluation Method of Warm-mix Asphalt Mixture by the Analysis of Bonding Properties between Asphalt Binder and Aggregate (중온 아스팔트 혼합물의 성능 평가를 위한 아스팔트 바인더와 골재 사이의 접착물성분석 방법에 관한 연구)

  • Yoo, In Sang;Cho, Dong-Woo;Hwang, Sung Do;Rhee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.803-810
    • /
    • 2011
  • The public interest of global warming and energy shortage is gradually increased, and the related industries also have become interested in developing eco-friendly material and technology. Warm-mix asphalt (WMA) is a result of the developments to alleviate global warming and energy problems. This WMA is produced at lower temperatures than the temperature at which hot mix asphalt (HMA) is produced. Because most tests in Superpave are developed only for the performance and maintenance of HMA produced by hot temperatures, it is difficult for the tests to identify properly the material properties and then evaluate the performances between HMA and WMA. This study deals with the development of a new protocol to differentiate HMA and WMA performance, and especially the interfacial properties between asphalt and aggregate are targeted as the performance indicator; thus, an evaluation method and guideline are suggested. The concept and idea of the test method applied in this study were modified from the DSR moisture damage test protocol. In addition, TSR test was performed to affirm the relation between the asphalt-aggregate interface and the asphalt-aggregate mixture performances. The followings are the results of this study. Shear stress at 85% linear visco-elastic complex modulus (LVE $G^*$) can be a better parameter than LVE $G^*$, which can assess the interfacial or bonding performance between asphalt and aggregate. Moreover, measuring the bonding performance in thinner film thicknesses will be a better way to evaluate the real and field situation between asphalt and aggregate. The interfacial properties' criteria to apply the newly developed test and parameter should be developed, after the asphalt mixture criteria relating to the interfacial properties are completed.

Surface Modification of Glass Fiber by Fluorination and Formation of Glass/PTFE Composites (Fluorination에 의한 유리섬유의 표면개질과 Glass/PTFE 복합재료의 형성)

  • 이승구;천성국;유근실;김동철;주창환
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.413-416
    • /
    • 2001
  • 여러 가지 기능성 섬유나 섬유복합재료에서는 가공성이나 계면접착성 향상 및 응용성을 높이기 위하여 섬유 표면을 개질하여 사용하는 경우가 많다. 지금까지 연구된 섬유의 표면개질 방법으로는 화학적 처리방법, 광화학적 방법, 플라즈마 처리법 등이 개발되어 있다. 화학적 방법은 장비가 간단한 장점이 있지만 사용 약품이 대부분 강한 독성을 지니고 있어서 작업 및 환경오염에 큰 문제점이 있고, 광화학적 방법은 radiation 에너지가 커야 하고 광에너지의 차폐 문제가 있다. (중략)

  • PDF

A Study on the Plasma Treatment Effect of Metal Fibersusing Micromechanical Technique (미세역학적 실험법에 의한 금속섬유의 플라즈마 처리효과에 관한 연구)

  • MiYeon Kwon;Seung Goo Lee
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.122-129
    • /
    • 2022
  • In this study, the hydrophilicity of the metal fiber is improved by introducing an oxygen-containing functional group to the fiber surface after treatment of the metal fiber using the oxygen plasma treatment time as an experimental variable. For the surface modification of metal fibers, changes in surface properties before and after plasma treatment were observed using SEM and x-ray photoelectron spectroscopy (XPS). In order to observe the effect of the plasma treatment time on the surface of the metal fiber, the change in contact angle of the metal fiber with respect to a polar solvent and a non-polar solvent was measured. After calculating the change in surface free energy using the measured contact angle, the contact angle and the surface free energy for metal fibers before and after oxygen plasma treatment were compared, and the correlation with the adhesion work was also considered. The microdroplet specimens were prepared to investigate the effect of surface changes of these metal fibers on the improvement of shear strength at the interface when combined with other materials and the interfacial shear strength was measured, and the correlation with the adhesion work was also identified. Therefore, the oxygen plasma treatment of the metal fiber results in an increase in the physical surface area on the fiber surface and a change in contact angle and surface energy according to the introduction of the oxygen-containing functional group on the surface. This surface hydrophilization resulted in improving the interfacial shear strength with the polymer resin.

Disassembly of the Package/PCB on Wasted LED Light and their Characterizations (LED 조명 모듈에 장착된 패키지/PCB의 분리 및 특성)

  • Seunghyun Kim;Ha Bich Trinh;Taehun Son;Jaeryeong Lee
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.3-9
    • /
    • 2023
  • Separation of LED packages from PCBs and analysis of the adhesive components was conducted to enhance the recycling potential of LED modules. LED package was separated from PCBs using heat treatment under optimal conditions: temperature of above 250 ℃ and time of 20 minutes. The separation equipment can be established using a hot air injector with controlling the rotational speed of the internal screw. The separation efficiency of each type of substrate (aluminum and glass fiber) was investigated with the thickness range of the adhesive materials (0.25-0.30 and 0.30-0.35 mm). Under the optimal conditions, the efficiency can reach to 97.5% for both types of substrates with adhesive materials of thickness 0.25~0.30mm. Characterization of the residual adhesive substances from the separated LED package and PCB using microwave digestion and ICP analysis showed that the residue contained of 95% of Sn, less than 5% of Cu and Ag.

Interfacial and Surface Energies Evaluation of Modified Jute and Hemp Fibers/Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PP-MAPP) Composites using Micromechanical Technique and Contact Angle Measurement (미세역학시험법과 접촉각 측정을 통한 변형된 Jute와 Hemp섬유 강화 Polypropylene (PP)-Maleic Anhydride Polypropylene Copolymers (PP-MAPP) 복합재료의 계면 및 표면에너지 평가)

  • Park, Joung-Man;Son, Tran Quang;Jung, Jin-Gyu;Kim, Sung-Ju;Hwang, Byung-Sun
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.1-11
    • /
    • 2006
  • Interfacial evaluation of the untreated and treated Jute and Hemp fibers reinforced different matrix polypropylene-maleic anhydride polypropylene copolymer (PP-MAPP) composites were investigated by micromechanical technique and dynamic contact angle measurement. For the statistical tensile strength of Jute and Hemp fibers, bimodal Weibull distribution was fitted better than the unimodal distribution. The acid-base parameter on the interfacial shear strength (IFSS) of the natural fiber composites was characterized by calculating the work adhesion, $W_a$. The effect of alkaline, silane coupling agent on natural fibers were obtained with changing MAPP content in PP-MAPP matrices. Alkaline treated fibers made the surface energy to be higher due to removing the weak boundary layers and thus increasing surface area, whereas surface energy of silane treated Jute and Hemp fibers decreased due to blocked high energy sites. MAPP in the PP-MAPP matrix caused the surface energy to increase due to introduced acid-base sites. Microfailure modes of two natural fiber composites were observed clearly differently due to different tensile strength of natural fibers.

  • PDF