• Title/Summary/Keyword: 접착력

Search Result 705, Processing Time 0.025 seconds

A STUDY ON THE RELATIVE SHEAR BOND STRENGTHS OF SOME ADHESIVE RESTORATIVE MATERIALS TO PRIMARY ENAMEL AND DENTIN (수종 접착성 수복재의 유치 법랑질과 상아질에 대한 상대적 접착력의 비교연구)

  • Kim, Seung-Mee;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.2
    • /
    • pp.237-245
    • /
    • 2000
  • For the purpose of comparing the bond strengths of some tooth adhesive restoration materials on primary enamel and dentin, 4 kinds (7 brands) of restorative materials including a composite resin (Z 100), a conventional glass ionomer cement (Chem-Flex), 2 brands of resin-modified glass ionomer cements (Fuji II LC-I, Vitremer), and 3 brands of compomers(Dyract AP, F2000, Compoglass) were investigated using UTM for measuring the shear bond strengths. Additionally the failure modes were examined by histologically observing the fractured surfaces of each specimen. The following results were obtained. 1. The shear bond strengths of Z 100 to the primary enamel were higher than those of other experimental materials except Fuji II LC-I, which showed significantly higher bond strength than Chem-Flex or Vitremer (P<0.05). 2. The shear bond strengths of Z 100 to the primary dentin were higher than those of other experimental materials except Dyract AP and Fuji II LC-I, both of which showed significantly higher shear strength than Chem-Flex or Vitremer (P<0.05). 3. The shear bond strengths of all restorative materials except Dyract AP showed relatively higher values to enamel surface than to dentin surface. In Dyract AP, the reverse was true significantly. 4. All materials examined showed cohesive failures except some Chem-Flex and Vitremer, which showed adhesive failures.

  • PDF

Design of a Stainless Steel Insert for Mechanical Joining of Long Fiber-reinforced Composite Structures (장섬유강화 복합재료 구조물의 기계적 접합을 위한 스테인레스 강 인서트 설계)

  • Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.139-144
    • /
    • 2018
  • Long Fiber-reinforced composites have advantages of excellent production efficiency and formability of complex shapes compared to conventional continuous fiber reinforced composite materials. However, if we need to make complicated composite shapes or to assemble parts made of different materials, a variety of joining methods are needed. In general, long fiber prepreg sheet (LFPS) contains mold release agent to facilitate demolding after thermoforming. Therefore, mechanical fastening is required in addition to the adhesive bonding to get proper joining strength. In this study, we proposed a stainless steel insert for co-cure bonding which cures LFPS and bonds the stainless steel insert through thermoforming process. The wing of the insert which is spread during the thermoforming process induces adhesion and mechanical wedging effect and serves as a hook to resist the pulling force. The burn-out method was used to confirm the unfolded state of the stainless steel insert wings inserted into the composite material. The static pull-out test was performed to quantitatively evaluate the joining strength. From these experimental results, the condition which guarantees the most appropriate joining strength was derived.

커패시터에의 적용을 위해 PET 필름에 스퍼터 증착한 ZrO2 박막의 특성

  • Gwon, Neung;Fei, Chen;Ryu, Han;Park, Sang-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.389.1-389.1
    • /
    • 2014
  • 최근의 환경 및 에너지에 대한 관심으로 수요가 증가하고 있는 하이브리드 및 전기 자동차나 태양광발전, 풍력발전용의 인버터기기에는 고에너지밀도 커패시터가 필수적이 되었다. 높은 에너지 밀도를 요구하는 전력전자, 펄스파워 등의 응용분야에 사용되는 고에너지밀도 커패시터는 PET (Polyethylene terephtalate)와 PP (Polypropylene)와 같은 폴리머 유전체를 사용하는 범용 필름 커패시터가 사용되었으나 사용 요구 조건의 한계에 도달하여, 새로운 유전체를 적용하는 커패시터가 절실히 필요한 상황이다. PET와 PP와 같은 유전체는 유전상수가 2~3의 낮은 값을 가지고 있어 고에너지밀도를 구현하기가 어렵다. 본 연구에서는 새롭게 요구되고 있는 고에너지 밀도 커패시터의의 성능을 만족시키기 위하여 $20{\sim}50{\mu}m$ 두께의 PET 필름상에 세라믹 유전체인 $ZrO_2$ 박막을 스퍼터(Sputter) 증착법에 의해 코팅하여 종래의 필름 커패시터와 세라믹 커패시터의 장점을 갖는 커패시터를 제조하기 위한 박막 유전재료의 개발을 목표로 하였다. 수백 nm~수 ${\mu}m$ 두께의 $ZrO_2$ 박막을 스퍼터링 공정조건에 따라 증착한 후 박막의 결정성, 기판과의 부착성, 증착속도, 유전상수, 절연파괴강도, 온도안정성 등을 XRD, SEM, AFM, EDS, XPS, Impedance analyzer 등에 의해 평가하였다. $ZrO_2$ 유전체막은 상온에서 증착하였음에도 정방정(tetragonal)구조의 결정질로 성장하였고 증착압력이 증가함에 따라 주피크의 세기가 감소하였다. 증착 중 산소가스를 주입하였을 경우에도 결정질막으로 성장하였다. 증착막들은 산소가스의 양이 증가함에 따라 짙은 흰색으로 변하였으며 PET 기판과의 접착력도 약해졌다. 또한 거칠기는 Ar가스만으로 증착한 경우보다 증가하였으며 24~66 nm의 평균 거칠기값을 보였다. PET위에 Ar가스만으로 증착한 $ZrO_2$의 비유전율은 1kHz에서 116~87의 비유전율을 보여 PET에 비해 매우 우수한 특성을 보였다. $ZrO_2$ 막들은 300kV/cm의 전계에서 대략 10-8A 이하의 누설전류를 보였다. 증착가스비를 달리하여 제조된 시편에서도 유사한 누설전류값을 나타내었다. 300 kV/cm 전후의 전계까지 측정한 $ZrO_2$ 막의 P-E (polarization-electric field) 특성을 확인하였는데, 5 mTorr의 압력에서 증착한 막은 253 kV/cm에서 $5.5{\mu}C/cm^2$의 분극값을 보였다. P-E커브의 기울기와 분극량에 따라 에너지밀도가 달라지므로 공정조건에 따라 에너지밀도가 변화됨을 예측할 수 있었다. PET위에 스퍼터 증착한 $ZrO_2$ 유전체막은 5mTorr의 Ar가스분위기에서 제조할 때 가장 안정적인 구조를 보였으며, 고에너지밀도 커패시터에의 적용가능성을 보였다.

  • PDF

Effects of Poly(Styrene-Co-Maleic acid) as Adhesion Promoter on Rheology of Aqueous Cu Nanoparticle Ink and Adhesion of Printed Cu Pattern on Polyimid Film (수계 Cu 나노입자 잉크에서 Poly(styrene-co-maleic acid) 접착 증진제가 잉크 레올로지와 인쇄패턴의 접착력에 미치는 영향)

  • Jo, Yejin;Seo, Yeong-Hui;Jeong, Sunho;Choi, Youngmin;Kim, Eui Duk;Oh, Seok Heon;Ryu, Beyong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.719-726
    • /
    • 2015
  • For a decade, solution-processed functional materials and various printing technologies have attracted increasingly the significant interest in realizing low-cost flexible electronics. In this study, Cu nanoparticles are synthesized via the chemical reduction of Cu ions under inert atmosphere. To prevent interparticle agglomeration and surface oxidation, oleic acid is incorporated as a surface capping molecule and hydrazine is used as a reducing agent. To endow water-compatibility, the surface of synthesized Cu nanoparticles is modified by a mixture of carboxyl-terminated anionic polyelectrolyte and polyoxylethylene oleylamine ether. For reducing the surface tension and the evaporation rate of aqueous Cu nanoparticle inks, the solvent composition of Cu nanoparticle ink is designed as DI water:2-methoxy ethanol:glycerol:ethylene glycol = 50:20:5:25 wt%. The effects of poly(styrene-co-maleic acid) as an adhesion promoter(AP) on rheology of aqueous Cu nanoparticle inks and adhesion of Cu pattern printed on polyimid films are investigated. The 40 wt% aqueous Cu nanoparticle inks with 0.5 wt% of Poly(styrene-co-maleic acid) show the "Newtonian flow" and has a low viscosity under $10mPa{\cdots}S$, which is applicable to inkjet printing. The Cu patterns with a linewidth of $50{\sim}60{\mu}m$ are successfully fabricated. With the addition of Poly(styrene-co-maleic acid), the adhesion of printed Cu patterns on polyimid films is superior to those of patterns prepared from Poly(styrene-co-maleic acid)-free inks. The resistivities of Cu films are measured to be $10{\sim}15{\mu}{\Omega}{\cdot}cm$ at annealing temperature of $300^{\circ}C$.

Development of Environmental Rubber Interphase Adhesive by use of Oligomer of Hydrocarbon (탄화수소계 올리고머를 이용한 환경친화적 고무계면 접착제 개발)

  • Jang, Byung-Man;Jang, Jeong-Seog;Park, Sung-Soo;Choi, Dug-Jai;Kim, Su-Kyung
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.142-150
    • /
    • 2001
  • Until now rubber industry field has used organic solvent base adhesive, there was always existed a fire risk, variety of quality and harmfulness of human body. To solve this problem we were developed a new adhesive that was maked by raw materials of hydrocarbon series which has the properties of nonvolatile and high flash point. Because of this new adhesive has the properties of nonvolatile and non-harmfulness to the human body, we expected to solve the problems of a fire hazard and the pollution of the environmental. Instead of the rubber binder that is used to a present adhesive, the new idea is adopted in a new type of adhesive. Nonvolatile solvent penetrated to the rubber surface and caused the swelling in rubber surface and as a result of this action, it has the self-adhesive power. In comparision with the present adhesive a new type of adhesive remarkably improved the maintenance time of adhesion and the durability of this adhesive showed similar aspect. Because it did not exhibit a drop of physical properties of rubber which was caused by swelling effect, we estimate that new type adhesive are very stable and not reacted to several rubber additives. While present adhesive appear the crack at cutting surface of curing rubber that caused by gas, new type adhesive not exist these crack.

  • PDF

Effect of air-contaminated TiN on the deposition characteristics of Cu film by MOCVD (공기 중에 노출된 MOCVD TiN 기판이 MOCVD Cu 증착에 미치는 효과)

  • Choe, Jeong-Hwan;Byeon, In-Jae;Yang, Hui-Jeong;Lee, Won-Hui;Lee, Jae-Gap
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.482-488
    • /
    • 2000
  • The deposition characteristics of Cu film by MOCVD using (hfac)Cu(1,5-COD)(1,1,1,5,5,5-hexafluro-2,4-pentadionato Cu(I) 1,5-cryclooctadiene) as a precursor have been investigated in terms of substrate conditions. Two different substrates such as air-exposed TiN and non-contaminated TiN were used for the MOCVD of Cu. MOCVD of Cu on the air-exposed TiN affected the nucleation rate of Cu as well as its growth, resulting in the Cu films having poor interconnection between particles with relatively small grains. On the other hand, in-situ MOCVD of Cu led to the Cu films having a significantly improved interconnection between particles with larger grains, indicating the resistivity as low as $2.0{\mu}{\Omega}-cm$ for the films having more than 1900$\AA$ thickness. Moreover, better adhesion of Cu films to the TiN by using in-situ MOCVD has been obtained. Finally, initial coalescence mechanism of Cu was suggested in this paper in terms of different substrate conditions by observing the surface morphology of the Cu films deposited by MOCVD.

  • PDF

Effects of Nano Silica and Siloxane on Properties of Epoxy Composites for Adhesion of Micro Electronic Device (나노 실리카 및 실록산이 초소형 전자소재 접착제용 에폭시 복합재의 물성에 미치는 효과)

  • Lee, Donghyun;Kim, Daeheum
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.332-336
    • /
    • 2009
  • When NCAs(non-conductive adhesives) are used for adhesion of micro-electronic devices, they often show problems such as delamination and cracking, due to the differences of CTE(coefficients of thermal expansion) between NCAs and substrates. Additions of inorganic particles or flexibilizers have been performed to solve those problems. The effects of silica addition on thermal/mechanical properties of amino modified siloxane(AMS)/silica/epoxy-nanocomposites were examined. The silica was treated by 3-glycidoxypropyltrimethoxysilane(GPTMS) for better compatibility between silica and epoxy matrix. AMS/silica/epoxy-nanocomposites filled with various amounts of AMS(1 and 3 phr) and various amounts of silica(3, 5 and 7 phr) were prepared. And Tg, moduli and CTE of nanocomposites were analyzed. Tg of AMS/Aerosil(non-modified silica)/epoxy-nanocomposites decreased from 125 to $118^{\circ}C$ with increasing Aerosil contents and moduli increased from 2,225 to 2,523 MPa with increasing Aerosil contents. Tg of AMS/M-silica (modified silica)/epoxy-nanocomposites decreased from 124 to $120^{\circ}C$ with increasing M-silica contents and moduli increased from 1,981 to 2,743 MPa with increasing M-silica contents. CTE of AMS/Aerosil/epoxy-nanocomposites and AMS/M-silica/epoxy-nanocomposites showed decreasing tendency regardless of the surface treatments.

Adhesion between heat-pressed lithium disilicate veneer and zirconia framework: Shear bond strength evaluation (열가압 리튬 디실리케이트 전장도재와 지르코니아 하부구조의 전단결합강도 평가)

  • Kim, Jae-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.335-341
    • /
    • 2020
  • This study examined the shear bond strength between the zirconia core and pressed lithium disilicate veneering ceramics. The Schmitz-Schulmeyer test method was used to investigate the core-veneer shear bond strength of industrially manufactured zirconia core ceramic (Zirtooth, HASS, Gangneung, Korea) and pressed veneer ceramic (IPS e.max Zirpress, Vita PM9, GC Initial IQ, HASS Rosetta SM) (N=40). Data were statistically analyzed using one-way ANOVA and Tukey's test (a=0.05). The fractured surfaces of the specimens were examined to determine the failure pattern using a digital microscope. The mean ± SD shear bond strength in MPa were 16.69±3.11, 14.21±3.63, 11.17±2.92, and 27.90±5.71 for IPS e.max Zirpress, VITA PM9, GC Initial IQ, and HASS Rosetta SM, respectively. The average shear bond strength was largest for HASS Rosetta SM, followed by IPS e.max Zirpress, Vita PM9, and GC Initial IQ(p<0.05). The digital microscopy examination of the fracture surface showed adhesive and cohesive failure in pressed lithium disilicate veneering ceramics. The use of lithium disilicate veneer ceramic produced a significantly higher shear bond strength.

Experimental Study of Removing Epoxy Resin from Iron Object using Nd:YAG Laser Cleaning System (철제유물에 사용된 에폭시수지 제거를 위한 Nd:YAG 레이저 클리닝 실험 연구)

  • Lee, Hye-Youn;Cho, Nam-Chul;Lee, Jong-Myoung;Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.27 no.3
    • /
    • pp.301-312
    • /
    • 2011
  • Epoxy resin has superior durability and adhesive strength and proper physical strength so that it is used to diversity materials for multi-purposes. However epoxy resin is hardly removed after hardening specially once it is applied to artefacts, it is difficult to remove them under re-conservation. This paper is an experimental study on removing epoxy resin applied to iron objects using Nd:YAG laser cleaning system. Tests conducted in this study investigated how increasing laser energy and pulses would give effect on samples. The samples were prepared in a way that epoxy resin, itself pure and one which was mixed with pigment and they were applied to iron coupons and corroded iron coupons respectively. As a result of experiment, pure epoxy resin applied to corroded iron coupons was ablated at high laser energy but epoxy resin applied to iron coupons and mixing with pigment were not ablated but discolored and bubbled due to laser-induced heat generation. Results of FT-IR showed no component alteration of shifted resins and no residues on the surfaces ablated by laser irradiation. From SEM-EDS for removed surfaces, the debris from epoxy resin and melting iron was observed. Therefore, this study demonstrated the possibilities and limitations for laser cleaning to remove epoxy resin from iron objects.

A study on the development and the physical properties of Epoxy Putty for earthenware restoration (토기 복원용 Epoxy Putty 개발 및 물성에 관한 연구)

  • Bae, Jin Soo;Cheong, Da Som;Kim, Woo Hyun;Kang, Seok In;Wi, Koang Chul
    • Journal of Conservation Science
    • /
    • v.30 no.1
    • /
    • pp.103-109
    • /
    • 2014
  • This study aimed to develop materials to compensate for problems of restoration for lost parts and material problems in the conservation treatment. First, there are several problems with existing materials as follows: secondary damage due to the high shrinkage rate and low adhesive strength, sense of difference due to the severe yellowing, remelting due to irreversibility of materials, processability due to the high strength, sag due to the prolonged setting time in the work process and surface contamination of artifacts due to tools or gloves. In order to solve these problems, this study set developmental goals after understanding the types and physical properties based on epoxy resin among the currently used restoration materials of pottery and earthenware. The developed epoxy resin is epoxy putty, which is cured within 5 minutes, for earthenware restoration. In the earthenware restoration method, the epoxy putty enhanced the workability by quickly curing in paste form and compensated disadvantages such as surface contamination. In addition, the use of white micro-balloon for the epoxy stock solution made coloring easier and weight lighter, and a restoration material with low shrinkage and superior processability was developed.