• Title/Summary/Keyword: 접는 날개

Search Result 7, Processing Time 0.022 seconds

Aeroelastic Analysis of Deployable Missile Control Fin with Bilinear Nonlinearity (이선형 비선형성을 포함하는 접는 미사일 조종날개의 공탄성 해석)

  • Bae, Jae-Sung;Shin, Won-Ho;Lee, In;Shin, Young-Sug
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.29-35
    • /
    • 2002
  • Aeroelastic characteristics of a deployable missile control fin have been investigated. A deployable missile control fin is modeled by a 2-dimensional typical section. Supersonic Doublet-Point method is used for the computation of supersonic unsteady aerodynamic forces and Karpel's Minimum-State approximation is used for the aerodynamic approximation. Root-locus method and time-integration method are used for the linear and nonlinear flutter analyses. For the nonlinear flutter analysis the deployable hinge is represented by a asymmetric bilinear spring and is linearized by using the describing function method. From the flutter analyses, the effects of nonlinear parameters on the aeroelastic characteristics are investigated.

Modal teat/analysis result correlation of folding fin (접는 날개에 대한 모드시험/해석결과 보정)

  • 양해석
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.305-315
    • /
    • 1996
  • Present paper aims at the correlation of modal characteristics of folding fin between test and analysis using an optimization theory. Folding fin is composed of a movable fin, a base fin, and many functional components related to the folding mechanism. Joint parts of folding fin in FEM are initially modeled as rigid elements resulting some difference between test and analysis in modal characteristics. Therefore, some equivalent springs representing joint parts are introduced to improve the FEM model. The springs were set as design variables, while the frequency difference between test and analysis was set as the object function. Bayesian procedure was ujsed for the minimization.

  • PDF

Nonlinear Aeroelastic Analysis in Time Domain for Folded Fins using ZAERO (ZAERO를 이용한 시간영역에서의 접는 날개 비선형 공탄성 해석)

  • Lee, Dong-Min;Kim, Jung-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.159-165
    • /
    • 2008
  • The purpose of this paper is to study the impact of concentrated nonlinearities, freeplays, on the aeroelastic behaviors of single- and double-folded control fins. The nonlinearities may cause limit cycle oscillation(LCO) below the linear flutter boundary. The effects of nonlinear hinges on LCO characteristics of the fins are examined as flight condition changes. Nonlinear time-domain flutter analyses are performed, using ZAERO. The results show that the aeroelastic stability boundaries of double-folded fin(DF) are higher than those of the single-folded fin(SF) and the lower hinge freeplay impact more critically on the stability than the upper hinge freeplay of the DF.

Model Establishment of a Deployable Missile Control Fin Using Substructure Synthesis Method (부구조물 합성법을 이용한 접는 미사일 조종날개 모델 수립)

  • Kim, Dae-Kwan;Bae, Jae-Sung;Lee, In;Han, Jae-Hung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.813-820
    • /
    • 2005
  • A deployable missile control fin has some structural nonlinearities because of the worn or loose hinges and the manufacturing tolerance. The structural nonlinearity cannot be eliminated completely, and exerts significant effects on the static and dynamic characteristics of the control fin. Thus, It is important to establish the accurate deployable missile control fin model. In the present study, the nonlinear dynamic model of 4he deployable missile control fin is developed using a substructure synthesis method. The deployable missile control fin can be subdivided Into two substructures represented by linear dynamic models and a nonlinear hinge with structural nonlinearities. The nonlinear hinge model is established by using a system identification method, and the substructure modes are improved using the Frequency Response Method. A substructure synthesis method Is expanded to couple the substructure models and the nonlinear hinge model, and the nonlinear dynamic model of the fin is developed. Finally, the established nonlinear dynamic model of the deployable missile control fin is verified by dynamic tests. The established model is In good agreement with test results, showing that the present approach is useful in aeroelastic stability analyses such as time-domain nonlinear flutter analysis.

Nonlinear Dynamic Characteristics of Deployable Missile Control Fin (접는 미사일 조종날개의 비선형 동특성)

  • Kim, Dae-Kwan;Bae, Jae-Sung;Lee, In;Shin, Young-Sug;Lee, Yeol-Wha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.808-815
    • /
    • 2002
  • The nonlinear characteristics for hinge of a deployable missile control fin are investigated experimentally. The nonlinearity is caused by a worn or loose hinge and manufacturing tolerance and cannot be eliminated completely. The structural nonlinearity has an effect on the static and dynamic characteristics of the control fin. Therefore, it is necessary to establish the accurate nonlinear model for the hinge of the control fin. In the present study the existence of nonlinearities in the hinge is confirmed from the frequency response experiments such as tip random excitation and base sine sweep. Using the system identification method. especially, ″Force-state Mapping Technique″, the types of nonlinearities are identified and the nonlinear hinge model of the control fin is established.

Aeroelastic Analysis in Frequency Domain for Wings with Double-Folding Mechanism (주파수 영역에서의 2단 접는 날개 공탄성 해석)

  • Kang, Myung-Koo;Kim, Ki-Un
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.104-113
    • /
    • 2006
  • To identify aeroelastic characteristics of wings with double-folding mechanism, aeroelastic analyses are performed. There are four wing models which consist of one linear model and three nonlinear models. The nonlinear models have one or two freeplay nonlinearties. The describing function method is used to approximately examine nonlinear effects. The aeroelastic module in MSC/NASTRAN is used to study the aeroelastic characteristics of the considered wing models. The effects of the folding mechanism and amplitude ratio are examined. As the amplitude ratio increases, the flutter speeds approach to those of the wing model with only one nonlinearity. The numerical results show that the flutter speeds of the wings with double-folding mechanism can be lower or higher than those of the wing model with only one folding mechanism depending upon the direction of the second folding mechanism.

Nonlinear Hinge Dynamics Estimation of Deployable Missile Control Fin (접는 미사일 조종날개의 비선형 힌지 동특성 파악)

  • Kim, Dae-Kwan;Bae, Jae-Sung;Lee, In;Woo, Sung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.848-854
    • /
    • 2002
  • The nonlinear characteristics for the hinge of a deployable missile control fin are investigated experimentally. The nonlinearity is caused by a worn or loose hinge and manufacturing tolerance and cannot be eliminated completely. The structural nonlinearity has an effect on the static and dynamic characteristics of the control fin. Therefore, it is necessary to establish the accurate nonlinear model for the hinge of the control fin. In the present study the existence of nonlinearities in the hinge is confirmed from the frequency response experiments such as tip random excitation and base sine sweep. Using the system identification method, especially, “Force-State Mapping Technique”, the types of nonlinearities are identified and the nonlinear hinge model of the control fin is established.

  • PDF