• 제목/요약/키워드: 점 추적

검색결과 1,306건 처리시간 0.028초

적외선 영상에서 특징점 추적을 이용한 추적창 조절 (Target Window Adjustment Method for feature point tracking in infra-red images)

  • 강재웅;성기열;정영헌;김수진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2013년도 제48차 하계학술발표논문집 21권2호
    • /
    • pp.297-298
    • /
    • 2013
  • 본 논문에서는 IR 영상추적을 위하여 가린 표적의 실제 중심을 예측하는 추적창 조절(target window adjustment) 기법을 제시한다. 대표적 분할 추적(patch tracking) 방식인 특징점 추적(feature point tracking)은 표적의 중심과 특징점을 coupling하여 가린 표적의 실제 중심을 예측할 수 있으나, 형상 정보가 적은 영상에서 표적의 ROI(Region of Interest)는 특징점의 분포만으로는 구할 수 없다. 본 논문에서는 상관추적의 추적창 조절 기법과 특징점 추적의 coupling 기법을 결합하여 표적이 장애물에 가리는 경우에도 안정적인 추적창을 유지한다.

  • PDF

능동형태모델 기반 다시점 영상 추적 (Multiview Tracking using Active Shape Model)

  • 임재현;김대희;최종호;백준기
    • 한국컴퓨터정보학회지
    • /
    • 제15권1호
    • /
    • pp.179-183
    • /
    • 2007
  • 다시점에서의 다중 객체 추적은 여러 분야에서 연구되고 있다. 다시점 영상 추적은 두 객체가 서로 근접하면 하나로 인식하는 문제점을 가지고 있다. 이러한 문제를 해결하기 위한 하나의 방법으로 능동형태모델(active shape mode: ASM)을 들 수 있다 ASM은 훈련집합을 이용하여 다른 객체에 가려진 목표 객체를 추적할 수 있다. 본 논문에서는 겹쳐진 객체를 추적하기 위해 ASM 기반의 다시점 추적 알고리듬(Multi-view tracking using ASM: MVTA)에 대해서 제안한다. 제안된 추적 방법은 (i) 영상 획득, (ii) 객체 추출, (iii) 객체 추적, 그리고 (iv) 현재 형태의 업데이트, 4가지 단계로 나눌 수 있다. 첫 번째 단계에서는 여러 대의 카메라를 사용해서 다시점 영상을 획득하며, 두 번째 단계에서는 객체를 배경으로부터 분리하며, 겹쳐진 객체로부터 목표 객체를 분리해낸다. 세 번째 단계에서는 추적을 위해 ASM을 사용하며, 마지막 단계인 네 번째 단계는 현재 입력 영상의 업데이트이다. 실험결과 제안한 MVTA는 겹쳐진 객체를 추적 시에 생기는 문제에 대해서 향상 된 결과를 보여준다.

  • PDF

긴 비디오 프레임들에서의 강건한 2차원 특징점 추적 (Robust 2D Feature Tracking in Long Video Sequences)

  • 윤종현;박종승
    • 정보처리학회논문지B
    • /
    • 제14B권7호
    • /
    • pp.473-480
    • /
    • 2007
  • 비디오 영상 프레임들에서 2D 특징점들을 지속적으로 추적하는 문제는 프레임 간의 빈번한 특징점 매칭 실패로 인하여 어려움을 겪어왔다. 본 논문에서는 긴 비디오 프레임들에서 강건하게 2D 특징점들을 추적하는 기법을 제안한다. 이전 프레임까지 추적되어온 각 특징점에 대해 움직임 상태변수를 정의하고 이들 상태변수로부터 현재 프레임에서의 움직임을 예측한다. 예측된 움직임은 추적을 위한 탐색 윈도우를 설정을 위한 초기 위치로 지정된다. 유사성 검사를 통해서 탐색 윈도우 내에서 대응점을 결정한다. 측정 데이터를 반영하여 현재 프레임에서의 특징점의 움직임 상태 변수를 수정하는 과정을 갖는다. 특징점의 추적 결과는 오차를 포함하고 있고 잘못된 추적이 발생될 수 있다. 잘못 추적된 이상값들은 RANSAC 알고리즘을 적용하여 제거함으로써 정확한 특징점 추적이 지속될 수 있도록 한다. 실제 비디오 프레임들에 대해 특징점 추적을 실시한 결과 긴 비디오 프레임들에 대해서도 특징점 추적이 안정적으로 수행됨을 확인할 수 있었다.

전압과 전류에 기초한 최대전력점추적 기술에 대한 비교와 분석에 관한연구 (Comparision and Analyses of Photovoltaic System with Voltage-Based and Current-Based Maximum Power-Point Tracking)

  • 이춘상;서영수;황락훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1501-1503
    • /
    • 2004
  • 설명되는 비교와 분석은 두개의 간단하고 빠르면서 신뢰성 있는 광기전력 시스템에 대한 최대전력점추적 기술의 비교를 나타낸다 : 즉 전압에 기초한 최대전력점추적과 전류에 기초한 최대전력점추적 방법이다. 온라인으로 전압, 전류 측정이 가능하고 전압에 기초한 최대전력점추적과 전류에 기초한 최대전력점추적 알고리즘으로 프로그램된 마이크로프로세서로 제어되는 추적기가 구성된다. 솔라 시스템의 부하로는 양수펌프 또는 저항으로 한다. 새로운 추적기의 모델링과 모의실험을 위해 시뮬링크 툴을 이용한다. 기존의 추적기와 비교되는 새로운 최대전력점추적기의 장점은 효율적이며 싸고 더 신뢰성 있는 태양광 발전 시스템으로서 dummy 셀의 제거이다.

  • PDF

떨림 현상이 완화된 3차원 객체 추적 (3D Object tracking with reduced jittering)

  • 강민석;박정식;박종일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 추계학술대회
    • /
    • pp.185-188
    • /
    • 2015
  • 미리 저장된 객체의 3차원 특징점(Feature point) 좌표와 카메라 영상의 2차원 특징점 좌표를 매칭(Matching)하여 객체를 추적하는 방식의 경우, 카메라의 시점이 변할 때 특징점에서 발생되는 원근 효과(Perspective effect)가 반영되지 못하여 특징점 매칭 오류가 발생한다. 따라서 특징점에서 발생하는 원근 효과를 반영하여 정확한 카메라 포즈를 추정하기 위해 이전 프레임(Frame)의 카메라 포즈(Camera Pose)에 맞추어 텍스쳐가 포함 된 3차원 객체의 모델을 렌더링 하여 원근 효과를 적용한 후, 현재 카메라 영상과 특징점 매칭하여 프레임 사이의 카메라 움직임을 구하여 객체를 추적한다. 더 나아가 본 논문에서는 특징점 매칭에서 발생하는 작은 오류들로 인한 미세한 카메라 움직임은 2단계의 임계치(Threshold)를 적용하여 떨림 현상으로 간주하여 떨림 현상이 제거된 객체 추적을 수행한다. 매 프레임마다 카메라 포즈에 맞춘 추적 객체를 렌더링 하기 때문에 떨림 현상으로 간주되어 제거된 카메라 움직임은 누적되지 않고, 추적 오류도 발생시키지 않는다.

  • PDF

방향 연결성 추적을 이용한 의사 특징점 제거 (pseudo feature point removal using direction connectivity tracing)

  • 김강;이건익
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제43차 동계학술발표논문집 19권1호
    • /
    • pp.69-72
    • /
    • 2011
  • 본 논문에서는 방향 연결성 추적을 이용한 의사 특징점 제거에 관하여 연구하였다. 특징점을 추출하는 방법에는 교차수를 이용한 방법이 있다. 그러나 교차수를 이용한 방법에서는 의사 특징점이 많이 추출된다. 교차수를 이용한 방법에서 잘못 추출된 특징점들을 방향 연결성 추적을 이용한 의사 특징점 제거 알고리즘을 이용하여 의사 특징점을 제거하였다. 성능 평가를 위하여 교차수를 이용한 방법과 방향 연결성 추적을 이용하여 추출된 실제 특징점을 비교하였으며, 실험결과 방향 연결성 추적을 이용하여 많은 의사 특징점이 제거되었음을 알 수 있었다.

  • PDF

3차원 기하정보 및 특징점 추적을 이용한 다시점 거리영상의 온라인 정합 (Online Multi-view Range Image Registration using Geometric and Photometric Features)

  • 백재원;박순용
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.1000-1005
    • /
    • 2007
  • 본 논문에서는 실물체의 3차원 모델을 복원하기 위해 거리영상 카메라에서 획득된 3차원 점군에 대한 온라인 정합 기법을 제안한다. 제안하는 방법은 거리영상 카메라를 사용하여 연속된 거리영상과 사진영상을 획득하고 문턱값(threshold)을 이용하여 물체와 배경에 대한 정보를 분류한다. 거리영상에서 특징점을 선택하고 특징점에 해당하는 거리영상의 3차원 점군을 이용하여 투영 기반 정합을 실시한다. 초기정합이 종료되면 사진영상간의 대응점을 추적하여 거리영상을 정제하는 과정을 거치는데 대응점 추적에 사용되는 KLT(Kanade-Lucas-Tomasi) 추적기를 수정하여 초기정합의 결과를 대응점 탐색에 이용함으로써 탐색의 속도와 성공률을 증가시켰다. 특징점과 추적된 대응점에 해당하는 3차원 점군을 이용하여 거리영상의 정제를 수행하고 정합이 완료되면 오프라인에서 3차원 모델을 합성하였다. 제안한 알고리듬을 적용하여 2개의 실물체에 대하여 실험을 수행하고 3차원 모델을 생성하였다.

  • PDF

표정변화에 따른 얼굴 표정요소의 특징점 추적 (Tracking of Facial Feature Points related to Facial Expressions)

  • 최명근;정현숙;신영숙;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.425-427
    • /
    • 2000
  • 얼굴 표정은 사람의 감정을 표현함과 동시에 그것을 이해할 수 있는 중요한 수단이다. 최근 이러한 얼굴 표정의 자동인식과 추적을 위한 연구가 많이 진행되고 있다. 본 연구에서는 대략적인 얼굴영역을 설정하여 얼굴의 표정을 나타내는 표정요소들을 찾아낸 후, 각 요소의 특징점을 추출하고 추적하는 방법을 제시한다. 제안하는 시스템의 개요는 입력영상의 첫 프레임에서 얼굴영역 및 특징점을 찾고, 연속되는 프레임에서 반복적으로 이를 추적한다. 특징점 추출과 추적에는 템플릿 매칭과 Canny 경계선 검출기, Gabor 웨이블릿 변환을 사용하였다.

  • PDF

실시간 감시 시스템을 위한 사전 무학습 능동 특징점 모델 기반 객체 추적 (Non-Prior Training Active Feature Model-Based Object Tracking for Real-Time Surveillance Systems)

  • 김상진;신정호;이성원;백준기
    • 대한전자공학회논문지SP
    • /
    • 제41권5호
    • /
    • pp.23-34
    • /
    • 2004
  • 본 논문에서는 사전학습이 필요 없는 능동 특징점 모델(non-prior training active feature model; NPT AFM) 기반에서 광류(optical flow)를 이용한 객체추적 기술을 제안한다. 제안한 알고리듬은 비정형 객체에 대한 분석[1]에 초점을 두고 있으며, 실시간에서 NPT-AFM을 사용한 강건한 추적을 가능하게 한다. NPT-AFM 알고리듬은 관심 객체의 위치를 파악하는 과정 (localization)과 이전 프레임 정보와 현재 프레임 정보를 이용하여, 객체의 위치를 예측(prediction), 보정(correction)하는 과정으로 나눌 수 있다 위치 파악 과정에서는 움직임 분할(motion segmentation)을 수행한 후 개선된 Shi-Tomasi의 특징점 추적 알고리듬[2]을 사용 하였다. 예측 및 보정 과정에서는 광류 정보를 사용하여 특징점을 추적하고[3] 만약, 특징점이 적절히 추적 되지 않거나 추적에 실패하면 특징점들의 시간(temporal), 공간(spatial)적 정보를 이용하여 예측, 보정하게 된다. 객체의 형태 (shape)대신 특징점을 사용하였으며, 객체를 추적하는 과정에서 특징점들은 능동 특징점 모델(active feature model; AFM)을 위한 학습 집합(training sets)의 요소로 갱신된다. 실험결과, 제안한 NPT-AF% 기반 추적 알고리듬은 실시간에서 비정형 객체를 추적하는데 강건함을 보석준다.

스케일-스페이스 필터링을 통한 특징점 추출 및 질감도 비교를 적용한 추적 알고리즘 (Feature point extraction using scale-space filtering and Tracking algorithm based on comparing texturedness similarity)

  • 박용희;권오석
    • 인터넷정보학회논문지
    • /
    • 제6권5호
    • /
    • pp.85-95
    • /
    • 2005
  • 본 논문에서는 시퀀스 이미지에서 스케일-스페이스 필터링을 통한 특징점 추출과 질감도(texturedness) 비교를 적용한 특징점 추적 알고리즘을 제안한다. 특징점을 추출하기 위해서 정의된 오퍼레이터를 이용하는데, 이때 설정되는 스케일 파라미터는 특징점 선정 및 위치 설정에 영향을 주게 되며, 특징점 추적 알고리즘의 성능과도 관계가 있다. 본 논문에서는 스케일-스페이스 필터링을 통한 특징점 선정 및 위치 설정 방안을 제시한다. 영상 시퀀스에서, 카메라 시점 변화 또는 물체의 움직임은 특징점 추적 윈도우내에 아핀 변환을 가지게 하는데, 대응점 추적을 위한 유사도 측정에 어려움을 준다. 본 논문에서는 Shi-Tomasi-Kanade 추적 알고리즘에 기반하여, 아핀 변환에 비교적 견실한 특징점의 질감도 비교를 수행하는 최적 대응점 탐색 방법을 제안한다.

  • PDF