• Title/Summary/Keyword: 점화 전극

Search Result 16, Processing Time 0.04 seconds

A Study on The Ignition Limit of Flammable Gases by Discharge Spark of Resistive Circuit (저항회로의 개폐불꽃에 의한 폭발성 가스의 점화한계에 관한 연구)

  • Lee Chun-Ha
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.106-112
    • /
    • 1997
  • This study measured the ignition limits of methane-air, propane-air, ethylene-air, and hydrogen-air mixture gases by discharge spark of D.C. power resistive circuit. The used experimental device is the IEC type spark ignition test apparatus, it consists of explosion chamber and supply -exhaust system of mixture gas. Mixture gases (methane-air, propane-air, ethylene-air, and hydrogen-air) were put into explosion chamber of IEC type spark ignition test apparatus, then it was confirmed whether ignition was made by 3,200 times of discharge spark between tungsten electrode and cadmium electrode. The ignition limits were found by increasing or decreasing the value of current. For the exact experiment, the ignition sensitivity was calibrated before and after the experiment in each condition. The ignition limits were found by changing the value of concentration of each gas-air mixture in D.C. 24 [V] resistive circuit. As the result of experiment, it was found that the minimum ignition limit currents exist at the value of methane-air 8.3 [$Vol\%$], propane-air 5.25[$Vol\%$], ethylene-air 7.8 [$Vol\%$], and hydrogen-air 21[$Vol\%$] mixture gases. For each the minimum ignition concentration of gases, the relationships between voltage and minimum ignition current were found. The results are as follows. - The minimum ignition limits are decreasing in the order of methane, propane, ethylene, and hydrogen. - The value of ignition current is inversely proportional to the value of source voltage. - The minimum ignition limit currents increase sharply at more than 2 [A]. The reason is caused by overheating the electrode.

  • PDF

A Study on the Identification Technique and Prevention of Combustion Diffusion through ESS (Energy Storage System) Battery Fire Case (ESS (에너지 저장장치) 배터리 화재사례를 통한 감식기법 및 연소 확산방지에 관한 연구)

  • Lee, Jung-Il
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.383-391
    • /
    • 2020
  • Purpose: To identify internal self ignition and ignition caused by external flames in energy storage rooms, and to analyze the difference between ignition due to overheating and ignition caused by external heat sources. Method: membrane melting point measurement, battery external hydrothermal experiment, battery overcharge experiment, comparative analysis of electrode plate during combustion by overcharge and external heat, overcharge combustion characteristics, external hydrothermal fire combustion characteristics, 3.4 (electrode plate comparison) / 3.5 (overcharge) /3.6 (external sequence) analysis experiment. Result: Since the temperature difference was very different depending on the position of the sensor until the fire occurred, it is judged that two temperature sensors per module are not enough to prevent the fire through temperature control in advance. Conclusion: The short circuit acts as an ignition source and ignites the mixed gas, causing a gas explosion. The electrode breaks finely due to the explosion pressure, and the powder-like lithium oxide is sparked like a firecracker by the flame reaction.

A study of Discharge characteristics of AC PDP with Lock shape ITO elctrode (Lock shape ITO전극을 가지는 AC PDP의 방전특성연구)

  • Choi, Yong-Suk;Nam, Hyung-Woo;Wi, Sung-Suk;Song, In-Cheol;Ok, Jung-Woo;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1433_1434
    • /
    • 2009
  • AC PDP는 다른 디스플레이들에 비해 높은 소비전력과 낮은 발광효율에 대한 문제를 가지고 있다. 이러한 문제를 해결하기 위해 본 연구에서는 기존의 Stripe shape ITO(Indium Tin Oxide)전극구조에서 Lock shape ITO전극구조를 제안하였다. 이 구조는 long gap을 가진 Square형태의 전극구조에 'ㄱ'형태의 점화전극을 추가한 구조로, 소비전력을 줄이기 위해 전극면적을 줄이고, discharge current를 제어 하였다. 또한 점화전극 구조에 의해 늘어난 gap으로 인한 방전개시전압 상승을 줄 일수 있었다. 실험은 Stripe shape ITO구조와 Lock shape ITO의 전극구조들로 구성되어 있는 Test Panel을 직접 제작하여 방전개시전압, 휘도, 소비전력, 발광효율을 측정하여 그 특성들을 비교하였다. 그 결과 제안된 전극구조에서의 소비전력은 reference 구조에 비해 최대 18% 감소하였고, 발광효율은 최대 13% 상승을 함을 보였다.

  • PDF

Partial Discharge Characteristics of Epoxy for Ignition Coil (점화코일용 에폭시의 부분방전 특성)

  • Shin Jong-Yeol;Hong Jin-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.141-149
    • /
    • 2004
  • The automobile equipped with a gasoline engine uses the ignition coil, namely, a high voltage generator, to make the mixed fuel ignited and burned in the combustion chamber, which results in the power to drive the engine. The ignition coil functions to convert a low voltage of the primary into a hiか voltage of the secondary by switching method, which will be transmitted to the electrode. Here, if the ignition coil has a defect even a little, it cannot function well. In this study, it was chosen epoxy molding ignition coil in recently and epoxy resin which is insulation material as specimens, and it was measured the characteristics of the partial discharge occurring to the specimens when those were applied to a voltage, and thereby, it was researched and analyzed the distribution of phase angle, amount and count of discharge due to the changing voltage, And as the result is applying to the actual automobile ignition system, it can be expected the enhancement of the performance of the ignition coil and the reliability of the electrical equipment.

정전기 방전조건이 낙하분진의 최소 착화에너지에 미치는 영향(II) -전극의 형상과 전극간격-

  • ;;Manabu Takeuchi;Mizuki Yamaguma;Tsutomu Kodama
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.64-69
    • /
    • 2000
  • 오늘날 분진은 석유 화학공업, 제약공업, 플라스틱공업 등 기능이 점점 다양화되고 있으며 산업분야에서도 광범위하게 이용되고 있다. 그로 인해 분진 폭발사고는 대형 공정에서뿐만 아니라 저장, 취급, 운송하는 일반화된 공정에서도 정전기 방전등의 점화원에 의해 화재 및 폭발의 위험성이 증가하고 있다. 이러한 재해를 미연에 방지하기 위해 안전관리의 일환으로 분진의 최소착화에너지(Minimum Ignition Energy; MIE)를 측정하여 관리하고 있다. (중략)

  • PDF

Electricity Generation and Microbial Community variation in Microbial Fuel Cell with various Electrode Combinations. (다양한 탄소전극조합에 따른 미생물 연료전지의 전기발생량 및 미생물 군집변화)

  • Kwon, Jae-Hyeong;Choi, Soo-Jung;Cha, Jae-Hwan;Kim, Hyo-Soo;Kim, Ye-Jin;Yu, Jae-Cheul;Kim, Chan-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.87-96
    • /
    • 2010
  • The electrode material is one of the factors affecting the power production of microbial fuel cell. In this study, effects of carbon electrode material, thickness and configuration on the power density, biofilm formation and microbial community diversity of microbial fuel cell were investigated. To optimize the anode-cathode electrode assembly, seven lab-scale reactors which had various carbon electrode constructions were operated in continuous mode. Under the steady state condition, the electrode combination of graphite felt (6 mm) with hole showed the highest cell voltage of 238 mV and the coulombic efficiency of 37%. As a result of SEM analysis, the bacteria growing on surface of knitted type of carbon cloth and graphite felt electrode ncreased significantly. The change of dominant species between seeding sludge and biofilm on the surface of anode electrode, microbial analysis with PCR-DGGE showed that the dominant species of seeding sludge are quite different from those of biofilm on the surface of each anode electrode. Especially Geobacter sp., a well known electrochemical bacteria, was found as the dominant species of the electrode combination with graphite felt.

Measurements of Equivalence Ratio in the Spark Plug Gap and Its-Effects on Combustion Under Stratified Mixture Conditions in a Constant Volume Chamber (정적 연소실에서 성층화된 혼합기 조건하의 점화 전극사이 당량비 측정과 연소 특성에 미치는 영향)

  • Bae, Sang-Su;Lee, Gi-Cheol;Min, Gyeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1311-1317
    • /
    • 2001
  • To investigate only the effects of the stratified mixture distribution on initial flame propagation and combustion characteristics, the instantaneous equivalence ratio in the spark plug gap and combustion pressure were measured simultaneously In a constant volume chamber, To induce the stratified propane-air mixture distribution near the spark plug, counter-flow typed mixture injection system was used under the constant mean equivalence ratio $\Phi$$\_$mean/= 1.0 The instantaneous equivalence ratio was measured by a single-shot Raman scattering with narrow-band KrF excimer laser. The measuring error was within the limit of $\pm$ 3.5% provided that the proposed method was applied to the measured Raman signals. Judging from mass fraction burned derived from the measured pressure, the optimum combustion characteristics were shown under the condition that the local equivalence ratio in the spark plug was near 1.28$\pm$0.04, and these characteristics were more remarkable at the initial stage of combustion.

A Study on the Inflammable Gas Explosion Triggered by the Electric Discharge Static Eliminator on Voltage Application Type (전압인가식 제전기의 방전에 의한 가연성가스의 폭발에 관한 연구)

  • Lee Chun Ha;Ok Kyoung Jea;Kim Jum-Ho;Kwon Byung-Duck;Cha Ha-Na;Yun Kea Won
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.22-26
    • /
    • 2004
  • The static eliminator is used for prevention of disasters by static discharge, improvement of production efficiency, protection of a sensitive electronic element on the discharge of static, and it is handled for elimination of static in the painting plant, the film manufacturing plant, the producing semi-conductor factory. This study described on the explosion appearance by discharge phenomena on the voltage input type eliminator's ion generation bar of inflammable gas through an experimental tests. It was used Hydrogen, Ethylene, Propane, Methane gas with the inflammable gas and it was studied on the ignition phenomena by the length of ion-generation static bar, the number of ion-generation electrode and the variation of input voltage to the ion-generation electrode. As a result of this study it was confirmed that the shorter of the bar's length, the greater of explosion danger. And it is considered that there will not ignite at general using inflammable gas, in case of more than 900 mm bar and one electrode.

Flame Propagations of Gasoline-Air Mixtures by Electrostatic Discharge Energies (정전기 방전에너지에 따른 가솔린-공기 혼합물의 화염전파)

  • Park, Dal-Jae;Kim, Nam-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.6-10
    • /
    • 2011
  • Experimental studies were carried out to investigate the effects on flame propagation of gasoline-air mixtures by different electrostatic discharge energies in a cylindrical chamber. Three different ignition energies were used: 1 mJ, 50 mJ and 98 mJ. In this work, a high-speed particle image velocimetry technique was applied to visualize the flow-field around ignition electrodes. It was found that as the ignition energy increased, the ignition kernel was different. The different ignition kernel caused different flame initiation. During the flame initiation, the higher ignition energy was applied, the higher flame speed was observed. However, with increasing time, the flame speeds were independent of the ignition energies used. Theses observed flame behaviors were similar to computational simulations shown in the literature. It was also found that as the ignition energies increased, the velocities of unburnt mixtures ahead of propagating flame fronts increased.

Spike Current Control Circuit for Two-stage Low Frequency Square wave Electric Ballast with Zero-Voltage Switching (ZVS를 이용한 2단 저주파 구형파 전자식 안정기의 스파이크 전류 제어)

  • Jung, Woo-Jin;Yoo, Chang-Gyu;Lee, Woo-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.179-181
    • /
    • 2009
  • 고압 방전 램프는 점등 후부터 정상상태에 이르기까지 방전관 내부의 온도 및 압력이 광범위하게 변화하는 복잡한 동작 특성으로 모델링이 어렵다. 이러한 특성은 램프를 구동하는 안정기의 설계에 어려움이 따른다. 램프의 구동에는 초기 점화 시 높은 점화용 전압 펄스를 필요로 한다. 점화 후에 정상상태에 다다르면 램프 전극의 소모를 줄이기 위해 교류로 구동되어야 한다. 하지만 램프를 교류로 구동하게 되면 음향 공진 현상이 발생할 수 있다. 음향 공진 현상은 램프 구동 전류의 맥동성분이 큰 경우에도 발생을 할 수 있으므로 구동 전류의 맥동 성분의 크기는 최소화 돼야 한다. 램프의 수명시간을 길게 하려면, 안정기는 램프를 정격전력으로 구동하여야 한다. 따라서 안정기에서는 정전력 제어가 필요하게 된다. 램프 전류의 극성이 변화할 때, 램프 전류는 spike전류와 중첩이 된다. 본 논문에서는 spike 전류를 저주파구형파 램프 전류의 포락범위 안에 유지하고, 고주파 스위칭시손실을 줄이기 위해 소프트 스위칭 기법을 이용한 회로 설계를 제안했다. 제안된 방법은 시뮬레이션 및 이론적 수식적 방법으로 검증 했다.

  • PDF