• Title/Summary/Keyword: 점화시험

Search Result 211, Processing Time 0.025 seconds

Cold flow Test and Ignition Test of a 75-tonf-Class Thrust Chamber with Ablative Material for Technology Demonstration (75톤급 기술검증용 내열재 연소기의 수류시험과 점화시험)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Kim, Mun-Ki;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.26-37
    • /
    • 2011
  • A 75-tonf-class LRE(liquid rocket engine) thrust chamber with ablative material for technology demonstration was manufactured on the basis of development technologies of 30-tonf-class LRE. Hydraulic characteristics of the thrust chamber were examined through cold flow test and ignition test of low flow condition. Test result showed that hydraulic function was good. Side ignition method with igniter ring also showed a fine function of ignition in operating ways of static condition. But a close review is required to understand the phenomena of generation and extinction of specific frequencies showed in dynamic characteristics ways. To achieve these, a large combustion test facility which is capable of performing combustion test at design condition of the 75-tonf-class thrust chamber should be constructed as soon as possible.

Ignition Characteristics of an Oxidizer Rich Preburner (산화제 과잉 예연소기 점화특성)

  • Moon, Il-Yoon;Moon, In-Sang;Hong, Moon-Geun;Kang, Sang-Hun;Yoo, Jae-Han;Ha, Seong-Up;Lee, Seon-Mi;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.106-109
    • /
    • 2012
  • It was designed and tested ignition that an oxidizer rich preburner for a staged combustion cycle liquid rocket engine propelled by kerosene and LOx. Operation conditions of the preburner are about 60 of OF ratio and 20 MPa of combustion pressure. Ignition characteristics were compared by propellants flowrate. As the results, the higher propellants flowrate, the shorter the ignition delay time and the higher ignition stiffness. The ignition delay time was affected by incoming the oxidizer flowrate through the refrigerative cooling channels. The oxidizer flowrate from the cooling channels decreased by inflow of combustion gas during initial ignition. The oxidizer flowrate of the cooling channels increases, it is rapid recovery by cooling effect, eventually the ignition delay time decreases.

  • PDF

Development of Hydrogen Peroxide Thruster adopted Silver Catalyst (은을 촉매로 사용하는 과산화수소 추력기 개발)

  • Lee, Su-Lim;Lee, Choong-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.67-73
    • /
    • 2007
  • In recent years hydrogen peroxide has become considerably more attractive as a green rocket propellant so a laboratory model of hydrogen peroxide thruster adopted silver catalyst and a test facility has been developed to research a hydrogen peroxide propulsion. The design scheme of thruster and the test data are presented including ignition delay, efficiency of characteristic exhaust velocity. As a result, 95% of efficiency of characteristic exhaust velocity was obtained at steady state operation condition.

Ignition Characteristics of Combustion Chamber with $LO_X$ Lead Cyclogram for Liquid Rocket Engine (액체로켓엔진 연소기 산화제 선공급 Cyclogram에 의한 점화특성)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hhyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.137-142
    • /
    • 2008
  • Ignition characteristics of combustion chamber with LOx lead cyclogram for liquid rocket engine were described. The combustion chamber has chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion of 12. Cold flow test to determine the filling time of propellant for cyclogram with LOx lead supply, ignition test to check the ability to ignite starting fuel from the ignitor, low pressure combustion test to check the propagation of flame into main fuel-oxidizer mixture from starting fuel and the main combustion stage, and design point combustion test to check the combustion performance were performed. Ignition and combustion tests with LOx lead supply were successfully performed and the stable cyclogram of start sequence for combustion chamber was developed.

  • PDF

A Study on Purge Gas Inflow according to Valve Operation Sequence during Staged Combustion Cycle Engine Reignition Test (다단연소 사이클 엔진 재점화 시험 시 밸브 작동순서에 따른 퍼지가스 유입에 대한 연구)

  • Hwang, Changhwan;Lee, Jungho;Kim, Chaehyeong;Jeon, Jun-Su;Park, Jae-Young;Lee, Kwang-Jin;Cho, Nam-Kyung;Kim, SeungHan;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.64-71
    • /
    • 2022
  • For the development of an improved upper-stage engine, research on a staged combustion cycle liquid rocket engine is in progress. A cold flow test, ignition test, and combustion test plans were established and performed to develop reignition combustion technology. In order to solve the problem of purge gas flowing into the fuel line, which may cause cavitation in the turbo pump during reignition, the test results of each stage were analyzed. Based on the analysis results, the purge gas inflow problem was solved by reducing the overlapping time between the operation of the bubble removal valve and the opening of the purge valve and the engine fuel valve. Based on this, the reignition combustion test was successfully performed.

Development of Electro-Mechanical Ignition Safety Device (전기-기계식 점화안전장치 개발)

  • Jang, Seung-Gyo;Kang, Ho-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.332-335
    • /
    • 2011
  • Electro-Mechanical Ignition Safety Device(EMISD) for solid rocket motor is designed and manufactured. The EMISD utilizes a true rotary solenoid for arming mechanism and an electric squib(initiator) for generating ignition energy. In order to prove the ignition capability of the EMISD, 10-cc Closed Bomb Test(CBT) is performed, which measures the pressure built by high temperature and high pressure gas generated by operating EMISD.

  • PDF

Ignition Test of an Oxidizer Rich Preburner (산화제과잉 예연소기 점화시험)

  • Moon, Il-Yoon;Moon, In-Sang;Yoo, Jae-Han;Jeon, Jae-Hyoung;Lee, Seon-Mi;Hong, Moon-Geun;Ha, Seong-Up;Kang, Sang-Hun;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.869-872
    • /
    • 2011
  • Ignition tests of an oxidizer rich preburner for a staged combustion cycle liquid rocket engine were performed to evaluate combustion performance. Design operation conditions of the tested oxidizer rich preburner are about 60 of OF ratio and 20 MPa of combustion pressure. The entire kerosene and some LOx injected into the mixing head is burned in combustion chamber and the remaining LOx injected through center holes of combustion chamber is vaporized. Full flow ignition method with hypergolic fuel was used. Each propellant was supplied in two stages for soft ignition. Test results, low frequency oscillation was occurred in low flow rate conditions under 45% of design flow rate. Stable ignition in the course of design combustion pressure was able to induce by minimization of low flow rate ignition region to escape low frequency oscillation.

  • PDF

A Study on the Cyclogram for the Firing Test of KSR-III Liquid Rocket Engine (KSR-III 주엔진 연소시험 Cyclogram에 대한 고찰)

  • 한영민;조남경;박성진;이수용;이대성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.19-27
    • /
    • 2002
  • The sequence of the propellant supply for ignition of a liquid rocket engine combustor is very important in the reliable and safe operation of the engine. The ignition sequence of KSR-III main engine was briefly described and the measuring parameters and their reliability determining ignition sequence were examined in this paper. The filling time of the engine propellant manifolds and the valve open/close time were reviewed to obtain the exact and reliable time of the propellant supply to the combustor. The combustion characteristics of the engine at starting were discussed at different supply lead of propellant. Finally, the hot firing test results with cyclogram determined by measuring parameters were presented.

AKM 축소형 복합재 연소관 개발 I

  • 이원복
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.19-19
    • /
    • 1999
  • KSR 3단 AKM Motor Case를 개발하기 위해 추진기관 경량화에 가장 유리하고 비강도 및 비강성이 뛰어난 복합재 연소관을 고려하여 직경 300mm급의 축소형 모델을 선행 개발하였다. Netting 이론에 의해 연소관 두께를 결정하고 체적을 최소화 하기 위해 구형으로 연소관 형상을 설계하였다. 연소관을 제작하기 위한 맨드렐은 분리, 조립식으로 설계, 적용하였고 연소관 기밀 유지 및 추진기관 연소시 연소관을 보호하기 위한 삭마성 재료로 EPDM base의 고무 내열재 조성을 개발하였다. 고무 내열재는 맨드렐 위에 적층하고 Vacuum bagging 상태로 Autoclave에서 가황하여 적용하였다. 국내 최초로 Prepreg를 사용하는 Dry process로 고무 내열재가 적층된 맨드렐 위에 Winding하고, Vacuum bagging 상태에서 경화하여 연소관을 제작하였으며, 이 때 사용한 Carbor/Epoxy Perpreg 재료의 기계적 성질 및 열특성 시험을 병행하였다. 제작된 연소관은 수압 시험을 통하여 구조적 안정성을 입증하였고, NDT 검사를 통해 재료간 계면 상태를 분석하였다. 시험이 끝난 연소관은 향후 점화기 개발을 위하여 점화제 종류 및 약량을 변경하여 점화 시험을 수행하여 점화기 개발을 위한 기초 데이터를 확보하였다.

  • PDF

Design and Output Characteristic Analysis of Electro-Mechanical Ignition Safety Device (전기-기계식 점화안전장치 설계 및 출력 특성 해석)

  • Jang, Seung-Gyo;Lee, Hyo-Nam;Oh, Jong-Yun;Oh, Seok-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1166-1173
    • /
    • 2011
  • Electro-Mechanical Ignition Safety Device(EMISD) for solid rocket motor is designed and manufactured. The EMISD utilizes a true rotary solenoid for arming mechanism and an electric squib(initiator) for generating ignition energy. In order to prove the ignition capability of the EMISD, 10-cc Closed Bomb Test(CBT) is performed, which measures the pressure built by high temperature and high pressure gas generated by operating EMISD. The pressure built in the free volume of 10-cc closed bomb and the opening time of the ignition gas outlet are calculated using one dimensional gas dynamic model which is composed of the ideal gas equation and mass-energy conservation equation. Comparing the test result with model prediction, it is realized that the pressure built in the free volume of closed bomb due to the firing of EMISD, has the efficiency ratio of about 34%.