• Title/Summary/Keyword: 점토 블록

Search Result 17, Processing Time 0.02 seconds

Identification of Dominant Cause of Cut-Slope Collapse and Monitoring of Reinforced Slope Behavior (개착사면의 붕락요인 분석 및 보강거동 계측)

  • Cho, Tae-Chin;Lee, Sang-Bae;Lee, Guen-Ho;Hwang, Taik-Jean;Kang, Pil-Gue;Won, Byung-Nam
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.20-32
    • /
    • 2011
  • Failure aspects of cut-slope, which induce the sequential collapses during the excavation stage, have been analyzed. Slope rock structures are investigated by examining the orientations and positions of discontinuity planes calculated based on the BIPS image inside the boreholes. Drilled core log has been also used to identify the structural defects. Clay minerals of swelling potentials are detected through XRD analysis. Numerical analysis for slope stability has been performed by utilizing the joint shear strength acquired from the direct joint shear test. Cut-slope collapse characteristics have been studied by investigating the posture of failure-prawn joint planes and the stability of tetrahedral blocks of different sizes. Cross-section analysis has been also performed to analyze the cut-slope behavior and to estimate the amount of reinforcement required to secure the stability of cut-slope. Behavior of reinforced cut-slope is also investigated by analyzing the slope monitoring data.

The Properties of Permeability and Freeze-Thaw Resistance of Water-Permeable Paving Brick Using Wastes (폐기물을 이용한 투수블록의 투수성 및 동결융해저항 특성)

  • 신대용;한상목;김경남;이현종
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.210-215
    • /
    • 2004
  • Porous ceramics for water-permeable paving brick was prepared by the sintering of mixed materials comprising of sewage sludge ash, waste porcelain fragment, waste glaze and low-grade clay at 1,000$^{\circ}C$ for 2 h, and the physical $.$mechanical properties, the permeability and the freeze-thaw resistance of specimens with preparation parameters were investigated. The physical mechanical properties were increased in specimens while porosity and permeability were decreased with increasing sewage sludge ash content and sintering temperature on the properties of specimens showed the opposite results. The bulk density, porosity, compressive strength and permeability (passed charge) of 30A60F specimens with 30 wt% of sewage sludge ash content, waste porcelain fragment size with 1∼2 mm and sintered at 1,000$^{\circ}C$ for 2 h were 2.17, 46.2%, 221 kgf/$\textrm{cm}^2$ and 3,150 coulombs, respectively. The permeability was increased with increasing waste porcelain fragment size, however compressive strength was decreased. The freeze-thaw resistance of 30A60F specimen with 1∼2 mm of fragment size was superior to that of the other specimens. The 30A60F specimens can be used for the water-permeable paving brick with the high permeability and adequate strength. The heavy metals included in the all specimens showed lower than the standard level.

Research of Load Reduction on Corrugated Steel Pipe Using EPS Block (EPS 블록을 이용한 파형강관의 하중저감에 관한 연구)

  • 김진만;조삼덕;최봉혁;오세용;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.91-99
    • /
    • 2004
  • Researches on the induced trench method using compressible materials such as clay, mud, straw have been performed to reduce the load acting on buried conduits under a high fill in USA and Canada. And in-situ tests on load reductionmethod using EPS block as a compressible inclusion have been performed in Japan and Norway. Using a EPS block as a compressible materials can have various benefits such as cost-effective design, enlargement of safety and easy construction of structure under high fills. This paper analyzes the arching material function of EPS which can result in reduction of earth pressure by arching effect in Corrugated Steel Pipe. A series of tests were conducted to evaluate the reduction of earth pressure on conduits using EPS. Based on field test it is found that the magnitude of vertical earth pressure on conduits was reduced to about 35∼40% compared with conventional flexible conduit systems.

Manufacturing Water Permeable Block Using Loess, Clay and Waste Sewage Sludge (황토, 점토 및 하수처리오니를 이용한 투수블록 제조)

  • Kim, Jong Dae;Han, Sang Moo;Jeong, Byung Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.476-481
    • /
    • 2015
  • Water permeable block was manufactured using waste sewage sludge, loess and clay for the purpose of recycling waste sludge due to the prohibition of waste sludge ocean dumping. Experiments for determining optimum mixing ratio was conducted by changing sludge content in water permeable block as 5~20%. In respect of compressive strength, $1,600N/cm^2$ ($163.3kg/cm^2$) was obtained when the mixing ratio of sludge : loess : clay were maintained by 5% : 65% : 30%, 10% : 65% : 25% and 15% : 65% : 20%, respectively. These mean that relatively high compressive strength can be obtained when the sludge content is maintained 5, 10, 15% at the 65% of loess content. In terms of water permeability and absorption rate, the higher values can be obtained as the sludge content increases. The optimum mixing ratio of sludge : loess : clay came out to be 15% : 65% : 20% when water permeability, absorption and strength were considered altogether, which matches the result observed by an electron microscope. The heavy metal leaching test result of the prepared permeable block appeared to satisfy the environmental standard in the content of Cd, Cu, Pb and As.

Development of Non-sintered Construction Materials for Resource Recycling of the Flotation Tailings (부선(浮選) 광미(鑛尾)의 순환자원화(循環資源化)를 위한 비소성(非燒成) 토건재료(土建材料) 개발(開發))

  • Kim, Joo-Ik;Jung, Moon-Young;Park, Jay-Hyun;Lee, Jin-Soo
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.37-45
    • /
    • 2011
  • This study was conducted to recycle flotation tailings as non-sintered construction materials considering the economic and eco-friendly treatments. The particle size distribution( median $220\;{\mu}m$) of flotation tailings from Soon-shin mine was confirmed to be larger than that(median $140\;{\mu}m$) of tailings from Sam-kwang mine. Thus we investigated the properties of non-sintered eco-brick producted with the tailings from Sam-kwang mine and non-sintered water permeable block producted with the tailings from Soon-shin mine. Compressive strength of non-sintered water permeable block which was made with less than 25 wt% of tailings from Soon-shin mine was met with products class(over 14.70 MPa) of water permeable concrete(EL 245) from KEITL. Meanwhile, the coefficient of its permeability wasn't met with the products class( over $1.0{\times}10^{-2}\;cm/sec$). The properties of non-sintered eco-brick with less than 40 wt% of tailings from Sam-kwang mine were satisfied with third class in sintered clay brick products standard(KS L 4201). The non-sintered eco-brick as a result of leaching test on heavy metals by KSLT was verified to be environmentally stabile.

Stemming Effect of the Crushed Granite Sand as Fine Aggregate at the Mortar Blasting Test (화강암 부순모래의 발파전색효과 연구)

  • Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.320-327
    • /
    • 2011
  • In this study, for stemming effect in blast of the mortar block body, the crushed granite sand as fine aggregate, which is waste rock obtained at the ○○ limestone mine, was investigated to compare with stemming materials such as sea sand, river sand, clayed soil and water can be acquired easily at the field. The mortar block body was manufactured with the dimensions of 50 cm width, 50 cm length and 70 cm height. The direct shear and sieve separator test were performed, and the properties of friction resistance were analyzed by the extrusion test for five stemming materials. Axial strain of steel bar and ejection velocity of stemming materials due to the explosive shock pressure in blasthole with the stemming length of 10 cm and 20 cm in the mortar blast test were measured by the dynamic data acquisition system. Among stemming materials, axial strain showed the largest value at the crushed granite sand as fine aggregate, and the ejection velocity was the smallest value at the stemming of water. The results has shown correlate with harden unit weight in blasthole, particle size distribution, shear resistance, and extrusion strength of stemming materials. The ejection velocity of stemming material at the mouth of blasthole and the axial strain of steel bar in the inside of blasthole tend to be inversely proportional to each other, represent exponentially.

Variations of Mechanical Properties of Hallasan Trachyte with respect to the Degree of Weathering (풍화진행에 따른 한라산조면암의 역학적 특성변화)

  • Cho, Tae-Chin;Lee, Sang-Bae;Hwang, Taik-Jean;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.287-303
    • /
    • 2009
  • Rock mass in Baekrokdam at the summit of Hallasan in Jeju island is composed of two volcanic rock types: Baekrokdam trachybasalt at the eastern region and Hallasan trachyte at the western region. On-going rockfall and subsequent collapse of Baekrokdam wall rock are closely linked to the weathering of trachyte distributed in the western region of Baekrokdam. Samples of Hallasan trachyte showing different weathering grades had been collected and the polarizing microscopic observation, X-ray diffraction analysis and analysis for chemical weathering had been conducted. Formation of secondary minerals, especially clay minerals, by chemical weathering has not been identified, but the change of chemical weathering indices indicated that chemical weathering process had been proceeded to the degree for increasing and decreasing the contents of some chemical components. Changes in physical and mechanical rock properties due to weathering has also been examined. Artificial weathering test of freezing-thawing reveals that the process of crack initiation and propagation deteriorated the mechanical characteristics of Hallasan trachyte and $D_B$ = 1.5 or porosity = $20{\sim}21%$ would be the ultimate limiting value induced by the mechanical weathering processes.