• Title/Summary/Keyword: 점착성

Search Result 742, Processing Time 0.034 seconds

Studies on the Eco-friendly Management of Whiteflies on Organic Tomatoes with Oleic Acid (토마토 유기농 시설재배에서 올레산을 이용한 친환경적인 가루이류 방제 효과)

  • Lee, Mun-Haeng;Kim, Sung-Eun;Kim, Young-Shik;Lee, Hee-Keyng;Lee, Hwan-Gu;Jee, Hyung-Jin;Kim, Yong-Ki;Shim, Chang-Ki;Kim, Min-Jeong;Hong, Sung-Jun;Lee, Youn-Su
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.1
    • /
    • pp.95-104
    • /
    • 2013
  • This research was performed to test the effects of oleic acid for the management of greenhouse whiteflies and tobacco whiteflies. Tobacco whiteflies, especially, are the vectors of tomato yellow leaf curl virus on tomato plants. Whiteflies are not only the vectors of various viruses but also the major insect pests that cause direct damages through sucking and induce sooty mold with their sweet dew on tomato plants. There are many eco-friendly management measures including the use of yellow sticky trap and natural enemies such as Eretmocerus eremicus and Amblyseius swirskii. However, these management measures have difficulties to implement in the greenhouse. Therefore, in this research, oleic acid was tested for its effect on the management of whiteflies at various concentrations of 1,000ppm, 2,000ppm, or 4,000ppm. As a result, treatments of 1,000ppm, 2,000ppm and 4,000ppm oleic acid showed the control value of 70%, 76% and 84%, respectively. In another test, treatments of 2,000ppm oleic acid, and control treatment of 1,5000ppm neem oil and 50ppm dinotefuran showed the control value of 82%, 75%, and 75%, respectively. Cost for one application of oleic acid and neem oil for 10a area would be 3,180 Won and 20,150 Won, respectively. As a result, it was assumed that the use of oleic acid would be a appropriate management measure.

Numerical analysis of pre-reinforced zones in tunnel considering the time-dependent grouting performance (터널 사전보강영역의 경시효과를 고려한 수치해석 기법에 관한 연구)

  • Song, Ki-Il;Kim, Joo-Won;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.109-120
    • /
    • 2007
  • Auxiliary support systems such as the reinforced protective umbrella method have been applied before tunnel excavation to increase ground stiffness and to prevent the large deformation. However, determination procedure of geotechnical parameters along the construction sequence contains various errors. This study suggests a method to characterize the time-dependent behavior of pre-reinforced zones around the tunnel using elastic waves. Experimental results show that shear strength as well as elastic wave velocities increase with the curing time. Shear strength and strength parameters can be uniquely correlated to elastic wave velocities. Obtained results from the laboratory tests are applied to numerical simulation of tunnel considering its construction sequences. Based on numerical analysis, initial installation part of pre-reinforcement and portal of tunnel are critical for tunnel stability. Result of the time-dependent condition is similar to the results of for $1{\sim}2$ days of the constant time conditions. Finally, suggested simple analysis method combining experimental and numerical procedure which considering time-dependent behavior of pre-reinforced zone on tunnel would provide reliable and reasonable design and analysis for tunnel.

  • PDF

Effects of Grain Size Distribution on the Shear Strength and Rheological Properties of Debris Flow Using Direct Shear Apparatus (직접전단장비를 이용한 토석류의 전단강도 및 유변학적 특성에 대한 입도분포의 영향 연구)

  • Park, Geun-Woo;Hong, Won-Taek;Hong, Young-Ho;Jeong, Sueng-Won;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.7-20
    • /
    • 2017
  • In this study, effects of grain size distribution on the shear strength and rheological properties are investigated for coarse- and fine-grained soils by using direct shear apparatus. Shear strengths are estimated for fine-grained soils with the maximum particle size of 0.075 mm and coarse-grained soils with the maximum particle size of 0.425 mm and fine contents of 17% prepared at dry and liquid limit states. The direct shear tests are conducted under the relatively slow shear velocity, which corresponds to the reactivated landslide or debris flow after collapse according to the landslide classification. In addition, for the evaluation of rheological properties, residual shear strengths for both fine- and coarsegrained soils prepared under liquid limit states are obtained by multiple reversal shear tests under three shear velocities. From the relationship between residual shear strengths and shear rates, Bingham plastic viscosity and yield stress are estimated. The direct shear tests show that cohesions of fine-grained soil are greater than those of coarse-grained soil at both dry and liquid limit states. However, internal friction angles of fine-grained soil are smaller than those of coarse-grained soil. In case of rheological parameters, the plastic viscosity and yield stress of fine-grained soils are greater than those of coarse-grained soils. This study may be effectively used for the prediction of the reactivated landslide or debris flow after collapse.

Quality Characteristics of Sulgidduk Added with Shinan Seomcho (Spinacia oleracea L.) Powder (신안 섬초 분말을 대체한 설기떡의 품질 특성)

  • Ko, Sang-Heui;Choi, Kap-Seong;Park, Jeong-Ro;Bing, Dong-Joo;Chun, Soon-Sil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.7
    • /
    • pp.1075-1080
    • /
    • 2014
  • The purpose of this study was to evaluate the physicochemical and sensory characteristics of Sulgidduk substituted with 2%, 4%, 6%, or 8% Shinan Seomcho (spinach, Spinacia oleracea L.) powder (SSP). The moisture content was lowest in the control (38.54%) and increased with greater SSP content, whereas water activity showed the opposite pattern. For color values, lightness significantly decreased with increasing SSP content. For texture analysis, hardness was lowest in Sulgidduk substituted with 4% SSP (154.97 g), and fracturability was lowest at a substitution level of 8%. Adhesiveness was not significantly different among the samples. Springiness significantly increased with greater SSP content. Gumminess and chewiness were highest at a substitution level of 2%. In the sensory evaluation, grass-flavor, bitterness, and off-flavor significantly increased with greater SSP content. Moisture was not significantly different among the samples. Sweetness, color, flavor, softness, and overall acceptability significantly decreased with greater SSP content. However, the overall acceptability scores of all samples substituted with SSP were higher than average. From the results, the optimum level of SSP substitution for production of Sulgidduk is be suggested to be 2~4%.

The Effects of Perceived Stress on Dietary Habits and Oral Health Behaviors in Korean Adolescents (우리나라 청소년의 스트레스 인지수준이 식습관 및 구강건강행태에 미치는 영향)

  • Lee, Min-Young;Choi, Eun-Mi;Chung, Won-Gyun;Son, Jung-Hui;Chang, Sei-Jin
    • Journal of dental hygiene science
    • /
    • v.13 no.4
    • /
    • pp.440-448
    • /
    • 2013
  • The purpose of this study was to analyze the effects of perceived stress on dietary habits and oral health behaviors in Korean adolescents. Data were from the Korea Youth Risk Behavior Web-based Survey (KYRBS) in 2011. A total of 74,186 adolescents were surveyed using the self-administered questionnaire. Logistic regression analyses were performed to elucidate the effects of perceived stress on dietary habits and oral health behaviors. Statistical analyses were conducted, and p<0.05 were considered significant. We found that adolescents with higher stress were more likely to increase the risk of adverse dietary habits (low consumption of fruits, vegetables and milk, high consumption of carbonated soft drinks, fast food and cookie) compared to those with lower stress. Regarding the relationship between perceived stress and oral health behaviors, adolescents with higher stress were less likely to practice oral health behaviors such as brushing teeth after snack consumption and brushing teeth before sleep compared to those with lower stress. This result indicates that adolescents' perceived stress might play a significant role in the negative dietary habits and oral health behavior.

An Analytical Study on the Slope Safety Factor Considering Various Conditions (다양한 조건을 고려한 사면안전율에 관한 해석적 연구)

  • Park, Choon-Sik;Ahn, Sang-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.31-41
    • /
    • 2019
  • This paper demonstrates safety factor for effective planning at initial stage by utilizing results on changes of safety factor according to various conditions of slop and examines impacts of factors that affect slope safety factors as well. Firstly, it describes shear strength which satisfies minimum allowable safety factor: 1.20 depending on height and slope. As the height increases by 5.0 m, the safety factors decrease by 0.04 while it tends to consistently reduce by approximately 20%, 30% and 40% after height goes to 10.0 m. As slope reduces by about 0.3, the safety factors increases by 0.4, which shows the rate of safety factors on slope grows by about 10%, 20% and 30% on lowering slope. When cohesion goes up by 10.0 kPa the safety factors increases by around 40% respectably while the angle of internal friction grows by $5^{\circ}$, it increases by about 8%. The rate of safety factors is identified as $Fs=3.86H^{-0.59}$, Fs = 0.43 s, Fs = 0.04 c, $Fs=0.02{\phi}$ depending on height, slope and shear strength. The safety factor with rainfall infiltration tends to increase by 18% compared to the condition of saturated surface on earth.

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

A Study on the Performance Evaluation of Water(wash out) Resistance of 5-Type Repair Materials in Water Leakage of Underground Concrete Structures (지하 콘크리트 구조물 누수부위에 시공되는 5계열 보수재료의 유실 저항 성능 평가 연구)

  • Kim, Soo-Yeon;Yoo, Jae-Yong;Oh, Sang-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.61-68
    • /
    • 2020
  • In this study, the international standard ISO TS 16774 Part 3 Test Method for Water (wash out) Resistance and KS F 4935 「Sealant Injection type for water leakage maintenance of adhesive flexible rubber asphalt series」, which are standardized as a quality control method of injection type repair materials used for water leakage cracks in underground concrete structures, are currently used in Korea. As a result, considering the performance criteria of "mass change rate -0.1%" stipulated in KS F 4935, the remaining 13 types repair materials, excluding RG-2 of synthetic rubber and UG-1 of urethane, need to be reviewed for stabilization of the loss resistance due to the flow of ground water. The results of this study are determined to be available as a basic indicator for the selection of repair materials used for cracks in concrete structures. In addition, it is expected that the results of this study can be utilized as reference data that can be reflected in the improvement of the quality of repair materials that will be researched and developed later.

A Parametric Study for Jointed Rock Slope Using FEM (절리 암반사면에서의 인자효과에 의한 유한요소 해석의 타당성 검토)

  • Lee, Jin-A;Chung, Chang-Hee;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.97-102
    • /
    • 2007
  • Though the stability analysis of soil slopes widely employs the limit equilibrium method, the study on the jointed rock slopes must consider the direction of joint and the characteristics of Joint at the same time. This study analyzes the result of the change in the factors which show the characteristics of discontinuity and the shape factor of rock slopes, and so on, in an attempt to validate the propriety as to the interpretation of jointed rock slope stability which uses the general finite element program. First, the difference depending on the flow rules was compared, and the factor effect study was conducted. The selected independent variables included the direction of joint which displays the mechanical characteristics of discontinuity, adhesive cohesion, friction angle, the inclination and height of rock slope which reveal the shape of slope and surcharge load. And the horizontal displacement was numerically interpreted at the 1/3 point below the slope, a dependent variable, to compare the relative degree of factor effects. The findings of study on factor effects led to the validation that the result of horizontal displacement for each factor satisfied various engineering characteristics, making it possible to be applied to stability interpretation of jointed rock slope. A modelling is possible, which considers the application of the result of real geotechnical surveys & laboratory studies and the non-linear characteristics when designing the rock slope. In addition, the stress change which may result from the natural disaster, such as precipitation, and the construction, can be expressed. Furthermore, as the complicated rock condition and the ground supporting effect can be considered through FEM, it is considered to be very useful in making an engineering decision on the cut-slope, reinforcement and so on.

A Study on Jointed Rock Mass Properties and Analysis Model of Numerical Simulation on Collapsed Slope (붕괴절토사면의 수치해석시 암반물성치 및 해석모델에 대한 고찰)

  • Koo, Ho-Bon;Kim, Seung-Hee;Kim, Seung-Hyun;Lee, Jung-Yeup
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.65-78
    • /
    • 2008
  • In case of cut-slopes or shallow-depth tunnels, sliding along with discontinuities or rotation could play a critical role in judging stability. Although numerical analysis is widely used to check the stability of these cut-slopes and shallow-depth tunnels in early design process, common analysis programs are based on continuum model. Performing continuum model analysis regarding discontinuities is possible by reducing overall strength of jointed rock mass. It is also possible by applying ubiquitous joint model to Mohr-Coulomb failure criteria. In numerical analysis of cut-slope, main geotechnical properties such as cohesion, friction angle and elastic modulus can be evaluated by empirical equations. This study tried to compare two main systems, RMR and GSI system by applying them to in-situ hazardous cut-slopes. In addition, this study applied ubiquitous joint model to simulation model with inputs derived by RMR and GSI system to compare with displacements obtained by in-situ monitoring. To sum up, numerical analysis mixed with GSI inputs and ubiquitous joint model proved to provide most reliable results which were similar to actual displacements and their patterns.