• Title/Summary/Keyword: 점성력

Search Result 246, Processing Time 0.026 seconds

The Characteristics of Ground Improvement by Thixotropy in the Ground Surrounding by Sand Piles (Sand Pile 설치지반에서 틱소트로피에 의한 지반개량특성)

  • 천병식;여유현
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.99-107
    • /
    • 2001
  • 일반적으로 샌드파일 설치로 인해 파일주변지반은 교란되어 스미어 영향과 배수저항에 의해 압밀지연 현상이 발생하는 것으로 알려져 있다. 특히 예민한 점성토 지반일 경우 교란정도가 크며, 틱소트로피현상이 지연될 경우 지지력 및 압축특성은 불리하게 된다. 본 연구에서는 원지반 특성이 파악된 채취시료를 이용하여 완전 교란조건에서의 실내모형시험과, 염분농도변화에 의한 실내역학시험을 실시하였다. 실내모형시험 결과 낮은 하중단계에서의 압밀계수는 비교란 시료의 특성과 유사하게 나타났으며, 염분농도 증가에 따라 일축압출강도가 증가하고 강도회복은 빠르며 압축지수는 작게 나타났다. 결과적으로 점성토지반 간극수중 염분농도는 강도증대와 압축특성 변화에 영향을 주며, 틱소트로피 증대의 영향요소가 적은 담수지반에서 샌드파일을 시공할 경우 발생하는 과다침하의 한 원인으로 여겨지는바, 이와 같은 요인은 측방유동에 의한 침하거동과 함께 고려하여야 할 영향요소로 파악되어야 할 것으로 판단된다.

  • PDF

Performance test of micronozzle (마이크로 노즐 성능평가)

  • Moon, Seong-Hwan;Oh, Hwa-Young;Huh, Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.72-78
    • /
    • 2005
  • We conducted the performance test of micronozzle having nozzle throat diameter of 1.0, 0.5, 0.25 mm in an ambient pressure. We used N2 gas as a cold gas propellant. We varied chamber pressure from 2 to 20 bar and measured the thrust and mass flow rate. Through the test, we concluded that viscous losses were increased with decreasing chamber pressure. We found that micronozzle performance was higher than orifice performance through thrust comparison.

Canard Rotor/Wing 비행체 추진시스템의 회전익 및 천이모드 성능

  • Lee, Chang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.50-55
    • /
    • 2004
  • Performance predictions of the propulsion system were conducted for a 900㎏ class Canard Rotor/Wing vehicle. The main components of the propulsion system are turbojet engine, exhaust ducts and nozzles. The internal flow of the duct was considered as one-dimensional, compressible and viscous flow. Adequate governing equations including centrifugal force effect were applied to the analysis of the duct flows. Results such as available power, available thrust, engine throttle, mass flow rates, rotor RPM and cruise nozzle area were presented for rotary-wing mode and transition mode.

  • PDF

An Experimental Investigation on Mechanical Properties of Electro-Rheological Fluids with the Application to Vibration Control (전기유동유체의 역학적 특성 고찰 및 진동 제어 응용)

  • 김기선
    • The Korean Journal of Rheology
    • /
    • v.6 no.1
    • /
    • pp.20-29
    • /
    • 1994
  • 본 논문에서는 실리콘 오일을 용매로 사용하여 조성된 전기유동유체의 전기장 부하 변화에 따른 역학적 특성을 고찰하였으며 그응용성에 대하여 연구하였다. 유체에 가해지는 전기장은 0~0.25kV/mm까지 변화시켰고 외부에서 가해지는 회전력은 0∼500rpm까지의 범위로 설정하였으며 용매의 점성계수 및 각각의 용매에 대한 입자 중량비를 달리하여 자체 조성한 4종류의 전기유동유체에 대하여 특성을 고찰하였고, 전기유동유체의 항복응력도 부 하되는 전기장의 함수로 증가함을 알수 있었다. 또한 부하되는 전기장의 크기 뿐만이 아니 라 입자의 중량비 용매의 점성계수도 전기유동유체의 거동에 많은 영향을 미침을 알수 있었 다. 또한, 전기유동유체를 이용한 응용예로서 지능구조물을 제작하여 전기장에 따른 진동특 성변화를 고찰하였다. 실험결과 부하되는 전기장의 강도가 증가함에 따라 구조물의 고유진 동수가 점차적으로 증가하였으며 입자의 중량비가 증가할수록 증가폭이 커 넓은 범위의 제 어영역을 가짐을 알수 있었다. 전기유동유체의 진동제어 이용가능성을 입증하기 위하여 시 간영역에서 구조물의 전기장에 대한 과도 진동제어 응답과 강제진동제어 응답을 실험하였다.

  • PDF

Effects of Geosynthetic Reinforcement on Compaction of High Water Content Clay (토목섬유 보강이 고함수비 점성토의 다짐에 미치는 영향)

  • Roh Han Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.67-84
    • /
    • 2005
  • This research was conducted to evaluate the effectiveness of reinforcement for nearly saturated soft clay compaction. The effectiveness was investigated by roller compaction test using nearly saturated clay specimens. The nearly saturated condition was obtained by submerging clay in the water for 12 hours. High water content specimens were compacted in plane strain condition by a steel roller. A specimen was compacted by four 5 cm horizontal layers. Specimens were prepared fur both reinforced and unreinforced cases to evaluate the effectiveness of reinforcement. Used reinforcement is a composite consisted of both woven and non-woven geotextile. The composite usually provides drainage and tensile reinforcement to hi인 water-contented clay so that it increases bearing capacity. Therefore, large compaction load can be applied to reinforced clay and it achieves higher density effectively. The reinforcement also increases compaction efficiency because it reduces the ratio between shear and vertical forces during compaction process. The maximum vertical stress on the base of specimen usually decreased with higher compaction thickness. The reinforcement increases soil stiffness under the compaction roller and it initiates stress concentration. As a result, it maintains higher vertical stress level on the base of specimen that provides better compaction characteristics. Based on test results, it can be concluded that the reinforcement is essential to achieve effective compaction on soft clay.

Numerical Analysis on Bearing Capacity of a Suction Bucket in Clay (수치해석을 이용한 점성토 지반에 설치된 버켓기초의 지지력 분석)

  • Le, Chi-Hung;Jeong, Jae-Uk;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.25-33
    • /
    • 2011
  • Suction buckets have been widely used for offshore structures such as anchors for floating facilities, and the foundations of offshore wind energy turbines. However, the design guidelines for suction buckets have not been clearly suggested. Therefore, this study performed the numerical analysis by using ABAQUS (2010) to evaluate bearing capacities and load-movement behaviors of the suction bucket in NC clay. For the numerical analysis, the depth ratio L/D (L=embedded length of skirt; D=diameter of a bucket) was varied from 0.25 to 1.0. The analysis results showed that the L/D ratio has a significant effect on the bearing capacity, and the vertical and horizontal capacities respectively increased by about 40% and 90%, when L/D ratio increased from 0.25 to 1.0. At the vertical loading, the bucket showed the similar failure mode with a deep foundation, so the shaft and toe resistances can be separately evaluated. At the horizontal loading, the bucket with L/D=O.25 showed the sliding failure mode and the bucket with $L/D{\geq}0.5$ showed the rotational failure mode.

Analysis of Piled Raft Interactions on Clay with Centrifuge Test (원심모형실험을 통한 점토지반에서의 말뚝지지 전면기초 상호작용)

  • Park, Dong-Gyu;Choi, Kyu-Jin;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.57-67
    • /
    • 2012
  • In the design for piled rafts, the load capacity of the raft is in general ignored and the load capacities of pile are only considered for the estimation of the total load carrying capacity of the piled raft. The axial resistance of piled raft is offered by the raft and group piles acting on the same supporting ground soils. As a consequence, pile - soil - raft and pile - soil interactions, occurring by stress and displacement duplication with pile and raft loading conditions, acts as a key element in the design for piled rafts. In this study, a series of centrifuge model tests has been performed to compare the axial behavior of group pile and raft with that of a piled raft (having 16 component piles with an array of $4{\times}4$) at the stiff and soft clays. From the test results, it is observed that the interactions of piles, soil, and raft has little influences on the load capacities of piles and raft in piled rafts compared with the load capacities of group piles and raft at the same clay soil condition.

Effect of Fluid Viscosity on Centrifugal Pump Performance (유체의 점성이 원심펌프 성능에 미치는 영향)

  • Kim, Noh-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.599-605
    • /
    • 2013
  • The characteristics of centrifugal pump performance according to fluid viscosity change were studied experimentally. A small volute pump with low specific speed was tested by changing the viscosity of an aqueous solution of sugar and glycerin, which is considered a Newtonian fluid. After finishing the test, the total head, shaft horsepower, and pump efficiency were compared with those of a water pump. The results are summarized as follows: (1) when the fluid viscosity is increased, the shut-off head shows very little change but the total head decreases gradually as the flow increases, and this makes the H-Q curve leaning rapidly, and (2) when the fluid viscosity is increased, the shaft horsepower shows very little change at the shutoff condition; however, the shaft horsepower increases more rapidly with an increase in the flow and viscosity.

Influence Factors on the Degree of Soil Plugging for Open-Ended Piles (개단말뚝의 폐색효과 영향인자 분석)

  • Jeong, Sang-Seom;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.5
    • /
    • pp.27-36
    • /
    • 2016
  • This paper presents the investigation of the major influence factors on the degree of soil plugging for open-ended piles based on the Coupled Eulerian-Lagrangian (CEL) numerical technique. The main objective of this study was to investigate the effect of soil plugging on the response of piles in various conditions. Through comparison of the results of field load tests, the CEL methodology was found to be in good agreement with the general trend observed by in situ measurement. Additionally, the parametric studies were performed by controlling the soil conditions, soil elastic moduli, end-bearing conditions and multi layers. It was found that the degree of soil plugging for sand layers was greater than that of clay layers. Also, the degree of soil plugging increased with an increase in both the soil stiffness and length of pile embedded in the bearing layer.

Critical Reynolds Number for the Occurrence of Nonlinear Flow in a Rough-walled Rock Fracture (암반단열에서 비선형유동이 발생하는 임계 레이놀즈수)

  • Kim, Dahye;Yeo, In Wook
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.291-297
    • /
    • 2019
  • Fluid flow through rock fractures has been quantified using equations such as Stokes equations, Reynolds equation (or local cubic law), cubic law, etc. derived from the Navier-Stokes equations under the assumption that linear flow prevails. Therefore, these simplified equations are limited to linear flow regime, and cause errors in nonlinear flow regime. In this study, causal mechanism of nonlinear flow and critical Reynolds number were presented by carrying out fluid flow modeling with both the Navier-Stokes equations and the Stokes equations for a three-dimensional rough-walled rock fracture. This study showed that flow regimes changed from linear to nonlinear at the Reynolds number greater than 10. This is because the inertial forces, proportional to the square of the fluid velocity, increased enough to overwhelm the viscous forces. This tendency was also shown for the unmated (slightly sheared) rock fracture. It was found that nonlinear flow was caused by the rapid increase in the inertial forces with increasing fluid velocity, not by the growing eddies that have been ascribed to nonlinear flow.