• Title/Summary/Keyword: 점성력

Search Result 246, Processing Time 0.031 seconds

A Study on Behavior of Offshore Structures under Wave Variation (파랑변화에 따른 해양구조물의 거동특성에 관한 연구)

  • Moon, Hyun-Gi;Kyung, Kab-Soo;Park, Jin-Eun;Jun, Ssang-Sun;Kim, Jin-Gon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.183-186
    • /
    • 2011
  • 해양구조물은 다양한 외력으로부터 지속적인 영향을 받으며 특히, 파력은 구조물의 설계에 결정적인 인자로 간주된다. 해양구조물 파장과 구조물의 크기와의 상대적인 관계로부터 크게 소형구조물, 대형구조물, 대상구조물로 대별될 수 있다. 전통적으로 소형구조물은 회절파의 발생이 없는 것으로 가정하여 Morison식으로부터 파력을 산정하고, 대형구조물은 회절파의 작용에 따른 관성력만을 고려하며, 대상구조물은 단면 2차원적인 파압만을 고려하여 Goda파압공식류로부터 작용파압을 추정하고 있다. 이러한 평가는 단주기파랑의 작용에 근거를 두고 있고, 또 대형 및 대상구조물의 경우에는 유체의 점성력을 고려하고 있지 않으며, 특히 지진해일파의 작용에 대한 평가는 전혀 이루어지지 않는 것이 현재의 상태이다. 본 연구는 대형구조물인 슬리트케이슨과 소형 구조물인 자켓구조물을 대상구조물로 선정하여 구조해석을 토대로 파랑의 변화에 따른 구조물의 거동특성을 연구하였다.

  • PDF

Effect of viscous Damping on the Stability of Beam Resting on an Elastic Foundation Subjected to Dry friction force (점성감쇠가 건성마찰력을 받는 탄성지지 보의 안정성에 미치는 효과)

  • 장탁순;고준빈;류시웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.179-185
    • /
    • 2004
  • The effect of viscous damping on stability of beam resting on an elastic foundation subjected to a dry friction force is analytically studied. The beam resting on an elastic foundation subjected to dry friction force is modeled for simplicity into a beam resting on Kelvin-Voigt type foundation subjected to distributed follower load. In particular, the effects of four boundary conditions (clamped-free, clamped-pinned, pinned-pinned, clamped-clamped) on the system stability are considered. The critical value and instability type of columns on the elastic foundation subjected to a distributed follower load is investigated by means of finite element method for four boundary conditions. The elastic foundation modulus, viscous damping coefficient and boundary conditions affect greatly both the instability type and critical load. Also, the increase of damping coefficient raises the critical flutter load (stabilizing effect) but reduces the critical divergence load (destabilizing effect).

A Study on the Analysis of Pressure Characteristics of Hydraulic Modulator for Anti-Lock Brake System (미끄럼 방지 제동장치용 유압모듈레이터의 압력 특성 해석에 관한 연구)

  • Song, Chang-Seop;Yang, Hae-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.120-127
    • /
    • 1996
  • Anti-lock Brake System has been developed to reduce tendency for wheel lock and improve vehicle control during sudden braking on slippery road surfaces. This is achieved by controlling the braking pressure, avoiding wheel lock, while retaining handling and brake performance. This paper is concerned about pressurecharacteristics of hydraulic modulator. Experimental sets which is consists of hydraulic modulator, duty controller, pressure regulator, pressure senset is consuructed. System modelling and computer simulation are performed for comparison with experimental results. Brake wheel pressure are measured under various driving pulse. The result of experiment show fairly agreement with the simulation. As a result, it is known that wheel pressure is affected by duty ratio, orifice diameter through computer simulation.

  • PDF

Determination of Rheological Properties of Surimi Gels and Imitation Crab-leg Products by Stress-Relaxation Test (시판 어묵 및 게맛살의 변형력완화 실험을 통한 유변학적 특성)

  • Choi, Won-Seok;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1085-1091
    • /
    • 1998
  • The purpose of this study was to investigate the rheological properties of surimi gels and imitation crab-leg products by stress-relaxation test and to examine the correlations between stress-relaxation parameters and T.P.A. parameters. The linear viscoelasticity of surimi gels and imitation crab-leg products was observed in the range of the strain of $5{\sim}20%$ at cross-head speed 2.4 mm/sec. The average tensile forces of surimi gels and imitation crab-leg products were similar, 370.4 g and 436.4 g, respectively, but surimi gels showed higher relaxation time and viscous component (17256.1 sec, $1.357{\times}10^{10}$ poise) than those of imitation crab-leg products (6110 sec, $0.519^{\ast}10^{10}$ poise). Estimated tensile force of each exponential term in relaxation test was highly related with hardness, gumminess and chewiness of T.P.A (r=0.93, 0.93, 0.95, p<0.01), the relaxation time of each exponential term was rrelated with cohesiveness (r=0.89, p<0.01) of T.P,A. and the elastic component of exponential term with gumminess, chewiness and hardness (r=0.92, 0.94, 0.93. p<0.01) of T.P.A.. The viscous component of exponential term was related with cohesiveness (r=0.83, p<0.05) of T.P.A.. The degree of texturization was negatively related with the relaxation time and viscous component (r=-0.92, -0.96, p<0.01).

  • PDF

Electro-Magnetic Field Analysis for Optimal design of Magneto-Rheological Fluid Damper Core (자기점서유체 댐퍼 코어의 최적화 설계를 위한 전자기장 해석)

  • Song, June-Han;Son, Sung-Wan;Chun, Chong-Keun;Kwon, Young-Chul;Ma, Yang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1511-1517
    • /
    • 2008
  • The magneto-rheological fluid expresses different cohesiveness according to the strength of the external electric current. The magneto-rheological fluid damper, which uses such characteristics of the fluid, generates shear force due to the fluid's cohesiveness. The core can be said to determine the magneto-rheological fluid damper's performance. This study uses the finite element analysis to compare the performance of different electromagnetic forces, which are affected by the shapes of the coil, and thus to find the optimum design for the core. In addition, as a step to construct a high-efficient damper, we suggest a type of damper that can control multiple coils and compares the performance of this damper and that of the standard damper by comparing the performance of their electro-magnetic fields.

Applicability of IGM theory Partial Drilled Shaft constructed on Granite Rocks (화강풍화암에 시공된 부분현장타설말뚝의 IGM이론의 적용성)

  • Ahn, Tae-Bong
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.379-385
    • /
    • 2013
  • In this study, partial drilled shafts (Bottom Cast-in-place Concrete pile) were applied to the pilot test site to ensure the bearing capacity; we used the skin friction force in the IGM to analyze the feasibility of the application of IGM theory. The soil characteristics were analyzed in cohesive, non-smear, and smooth conditions for the application of the IGM theory via geotechnical investigation and measurement of the disturbance and surface roughness. Static load and load transfer tests were conducted to calculate the allowable bearing capacity and the skin friction force by depth. The skin friction force increased with increase in the depth and standard settlement, showing a very high correlation. In addition, because the unconfined strength ($q_u$), which is the most important parameter in the cohesive IGM, cannot be measured in a weathered granite area, the static load and load transfer test results and the N value were used to obtain $q_u$.

Formulation of Friction Forces in LM Ball Guides (LM 볼가이드의 마찰력 정식화)

  • Oh, Kwang-Je;Khim, Gyungho;Park, Chun-Hong;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.199-206
    • /
    • 2016
  • Linear motion (LM) ball guides with rolling contact are core units of feed-drive systems. They are widely applied for precision machinery such as machine tools, semiconductor fabrication machines and robots. However, the friction force induced from LM ball guides generates heat, which deteriorates positioning accuracy and incurs changes of stiffness and preload. To accurately analyze the effects and apply the results to precision machine design, mathematical modeling of the friction force is required. In this paper, accurate formulation of the friction force due to rolling, viscous, and slip frictions is conducted for LM ball guides. To verify the reliability of the developed friction model, experiments are performed under various assembly, load and velocity conditions. Effects of frictional components are analyzed through the formulated friction model.

Analysis of the Bearing Behavior of a Tripod Bucket Installed in Clay (점성토 지반에 설치된 Tripod 버켓기초의 지지거동 분석)

  • Kim, Sung-Ryul;eong, Jae-Uk;Oh, Myounghak;Kwon, Osoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.105-111
    • /
    • 2012
  • Bucket foundations, which are used in the foundations of offshore wind turbines, should be able to withstand large amounts of horizontal and moment loads. Tripod bucket foundation, which combines three single buckets, has been used to increase horizontal and moment capacities. This study performed numerical analysis using ABAQUS (2010), to analyze the group effect and the bearing capacity of a tripod bucket in clay. Parametric studies were performed varying the bucket spacing ratio S/D (S=spacing between the centers of the bucket and the tower; D=diameter of the bucket) and depth ratio L/D (L=embedded length of skirt). The applied constitutive models were a linear elastic perfectly plastic model with Tresca yield criteria for normally consolidated clay and an elastic model for buckets. Loading in the vertical, horizontal, and moment directions was simulated with an increase in each movement at a reference point. The bearing behavior and the capacities of a single and a tripod bucket were compared. Capacity evaluation method of the tripod bucket was suggested using the capacity of a single bucket.

Load Transfer Characteristics and Ultimate Bearing Capacity of PHC Pile in Deep Soft Clay Layer (대심도 연약지반에 근입된 PHC말뚝기초의 하중전이특성 및 극한지지력 산정)

  • Lee, Yonghwa;Kim, Myunghak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • In this study, the analysis of load transition of PHC pile was performed with the static load test, which was driven in deep soft clay layer of MyungJi site in the western area of Pusan. The results of test showed that the range of unit side resistance of pile in sand layer were $7.4t/m^2$ to $23.3t/m^2$ and $6.4t/m^2$ in the soft clay layer, while the unit base resistance was $955t/m^2$ in dense silty sand layer. To select the most reasonable static bearing capacity formular, the field measured values are compared with the calculated ones from the suggested various formular. In the case of side resistance in sand layer, the suggest formular in the Structural Foundation Design Manual by KGS was most reasonable, while in clay layer Railroad Design Manual.

  • PDF

Study on Anisotropy of Normally Consolidated Clay Soils (정규압밀점성토의 이방성에 관한 연구)

  • 권오순;정충기
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-50
    • /
    • 1995
  • In situ clay soils with Ko condition have anisotropic characteristics, varying the response according to the principal stress direction upon loading. But because of their practicality and simplicity, consolidated isotropic undrained compression tests are commonly used in practice to determine the behavior of cohesive soils. In this study to investigate the anisotropic characteristics and the effects of consolidation stress states on the response of normally consolidated clay soils during shearing, triaxial compression and extension tests after consolidating the undisturbed clay soil samples, which are obtained as a block sample to normalized consolidation states under isotropic or Ko state, were carried out. As a result of tests, the anisotropy of the undrained strength was confirmed. Comparing the soil responses between isotropic and Ko consolidation, the undrained strength by isotropic consolidation is overestimated because of its higher mean consolidation pressure. And isotropic consolidation reduces the anisotropy of soil response and influences on the stress-strain behavior and pore pressure response because the animotropic soil structure is partially collapsed during isotropic consolidation process. Also, OCR in overconsolidated soils is decreased by isotropic consolidatiorL Friction angle in eztension is higher than that in compression, but regression analysis shows that friction angle with cohesion in extension is almost the same as that without cohesion in compresslon.

  • PDF