• Title/Summary/Keyword: 점근적 안정성

Search Result 44, Processing Time 0.02 seconds

On the Robust Adaptive Sliding Mode Control of Robot Manipulators (로봇 매니퓨레이터의 강건한 적응 슬라이딩 모드제어)

  • Bae, Jun-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.6
    • /
    • pp.28-36
    • /
    • 2001
  • A robust adaptive sliding mode robot control algorithm is derived, which consists of a feed-forward compensation part and discontinuous control part. The unknown parameters is categorized into two groups, with group containing the parameters estimated on-line, and group containing the parameters not estimated on-line. Then a sliding control term is incorporated into the torque input in order to account for the effects of uncertainties on the parameters not estimated on-line and of disturbances. Moreover, the algorithm is computationally simple, due to an effective exploitation of the structure of manipulator dynamics. It is shown that, despite the existence of the parameter uncertainty and external disturbances, the controller is globally asymptotically stable and guarantees zero tracking errors.

  • PDF

Adaptive Fuzzy Sliding Mode Control for Nonlinear Systems Using Estimation of Bounds for Approximation Errors (근사화 오차 유계 추정을 이용한 비선형 시스템의 적응 퍼지 슬라이딩 모드 제어)

  • Seo Sam-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.527-532
    • /
    • 2005
  • In this paper, we proposed an adaptive fuzzy sliding control for unknown nonlinear systems using estimation of bounds for approximation errors. Unknown nonlinearity of a system is approximated by the fuzzy logic system with a set of IF-THEN rules whose consequence parameters are adjusted on-line according to adaptive algorithms for the purpose of controlling the output of the nonlinear system to track a desired output. Also, using assumption that the approximation errors satisfy certain bounding conditions, we proposed the estimation algorithms of approximation errors by Lyapunov synthesis methods. The overall control system guarantees that the tracking error asymptotically converges to zero and that all signals involved in controller are uniformly bounded. The good performance of the proposed adaptive fuzzy sliding mode controller is verified through computer simulations on an inverted pendulum system.

Adaptive Fuzzy Sliding Mode Control for Nonlinear Systems without Parameter Projection Method (파라미터 투영 기법이 필요 없는 비선형 시스템의 적응 퍼지 슬라이딩 모드 제어)

  • Seo, Sam-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.499-505
    • /
    • 2011
  • In this paper, we proposed an adaptive fuzzy sliding mode control for nonlinear systems without parameter projection method. By modifying the controller structure, the parameters of the estimated input gain function are guaranteed not being identically zero and it is shown that the control scheme will not cause any implementation problem even if the estimated value of input gain function is zero at any moment during on-line operations. Except for the input gain function which an approximate estimate for its lower bound is needed, the proposed control scheme does not assume a priori the exact values of the bounding parameters. Based on Lyapunov synthesis methods, the overall control system guarantees that the tracking error asymptotically converges to zero and that all signals involved in controller are uniformly bounded. This can be illustrated by the simulation results for an inverted pendulum system.

Stock market stability index via linear and neural network autoregressive model (선형 및 신경망 자기회귀모형을 이용한 주식시장 불안정성지수 개발)

  • Oh, Kyung-Joo;Kim, Tae-Yoon;Jung, Ki-Woong;Kim, Chi-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.335-351
    • /
    • 2011
  • In order to resolve data scarcity problem related to crisis, Oh and Kim (2007) proposed to use stability oriented approach which focuses a base period of financial market, fits asymptotic stationary autoregressive model to the base period and then compares the fitted model with the current market situation. Based on such approach, they developed financial market instability index. However, since neural network, their major tool, depends on the base period too heavily, their instability index tends to suffer from inaccuracy. In this study, we consider linear asymptotic stationary autoregressive model and neural network to fit the base period and produce two instability indexes independently. Then the two indexes are combined into one integrated instability index via newly proposed combining method. It turns out that the combined instability performs reliably well.