• Title/Summary/Keyword: 점군(點群)

Search Result 167, Processing Time 0.02 seconds

Map Error Measuring Mechanism Design and Algorithm Robust to Lidar Sparsity (라이다 점군 밀도에 강인한 맵 오차 측정 기구 설계 및 알고리즘)

  • Jung, Sangwoo;Jung, Minwoo;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.189-198
    • /
    • 2021
  • In this paper, we introduce the software/hardware system that can reliably calculate the distance from sensor to the model regardless of point cloud density. As the 3d point cloud map is widely adopted for SLAM and computer vision, the accuracy of point cloud map is of great importance. However, the 3D point cloud map obtained from Lidar may reveal different point cloud density depending on the choice of sensor, measurement distance and the object shape. Currently, when measuring map accuracy, high reflective bands are used to generate specific points in point cloud map where distances are measured manually. This manual process is time and labor consuming being highly affected by Lidar sparsity level. To overcome these problems, this paper presents a hardware design that leverage high intensity point from three planar surface. Furthermore, by calculating distance from sensor to the device, we verified that the automated method is much faster than the manual procedure and robust to sparsity by testing with RGB-D camera and Lidar. As will be shown, the system performance is not limited to indoor environment by progressing the experiment using Lidar sensor at outdoor environment.

Parameter analysis in Fast Global Registration to improve accuracy and speed (고속 전역 정합법에서 정밀도 및 속도 향상을 위한 매개변수 분석)

  • Lim, Sukhyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.799-806
    • /
    • 2021
  • The transforming process of point clouds with its local coordinates into a global coordinate is called registration. In contrast to the local registration which takes a long time to calculate and performs precision registration after initial rough positioning, the global registration calculates the corresponding points for registration and performs at once, so it is generally faster than the local registration, and can perform it regardless of the initial position. Among the global methods, the Fast Global Registration is one of the widely used methods due to its fast performance. However, lots of parameters should be set to increase the registration accuracy and speed. In this paper, after analyzing and experimenting the parameters and propose parameters that work effectively in actual registration. The proposed result will be helpful in setting the direction when it is necessary to use the Fast Global Registration method.

3D Shape Embodiment of Dam using the 3D Laser Scanning System (3차원 레이저 스케닝 시스템을 이용한 댐체의 3차원 형상구현)

  • Shon, Ho-Woong;Yun, Bu-yeol;Park, Dong-il;Pyo, Ki-Won
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.377-386
    • /
    • 2006
  • There is an inseparable relation between human race and engineering work. As world developed into highly industrialized society, a diversity of large structures is being built up correspondently to limited topographical circumstance. Though large structures are national establishments which provide us with convenience of life, there are some disastrous possibilities which were never predicted such as ground subsidence and degradation. It is very difficult to analyze the volume of total metamorphosis with the relative displacement measurement system which is now used and it is impossible to know whether there is structural metamorphosis within a permissible range of design or not. In this research with an object of 13-year-old earthen dam, through generating point-cloud which has 3D spatial coordinates(x, y, z) of this dam by means of 3D Laser Scanning, we can get real configuration data of slanting surface of this dam with this method of getting a number of 3D spatial coordinates(x, y, z). It gives 3D spatial model to us and we can get various information of this dam such as the distance of slanting surface of dam, dimensions and cubic volume. It can be made full use of as important source material of reinforcement and maintenance works to detect previously the bulging of the dam through this research.

  • PDF

Land Cover Classification Using Lidar and Optical Image (라이다와 광학영상을 이용한 토지피복분류)

  • Cho Woo-Sug;Chang Hwi-Jung;Kim Yu-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.139-145
    • /
    • 2006
  • The advantage of the lidar data is in fast acquisition and process time as well as in high accuracy and high point density. However lidar data itself is difficult to classify the earth surface because lidar data is in the form of irregularly distributed point clouds. In this study, we investigated land cover classification using both lidar data and optical image through a supervised classification method. Firstly, we generated 1m grid DSM and DEM image and then nDSM was produced by using DSM and DEM. In addition, we had made intensity image using the intensity value of lidar data. As for optical images, the red, blue, green band of CCD image are used. Moreover, a NDVI image using a red band of the CCD image and infrared band of IKONOS image is generated. The experimental results showed that land cover classification with lidar data and optical image together could reach to the accuracy of 74.0%. To improve classification accuracy, we further performed re-classification of shadow area and water body as well as forest and building area. The final classification accuracy was 81.8%.

Construction of Multi-Dimensional Ortho-Images with a Digital Camera and the Multi-Image Connection Method (디지털카메라와 다중영상접합법을 이용한 다차원 정사영상의 구축)

  • Kim, Dong Moon
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.295-302
    • /
    • 2014
  • Essential to the establishment of such 3D spatial information are the laser scanning technology to obtain high-precision 3D point group data and the photography-metric camera to obtain high-resolution multispectral image information. The photography-metric camera, however, lacks in usability for its broad scope of utilization due to the high purchase price, difficult purchase channel, and low applicability. This study thus set out to investigate a technique to establish multi-dimensional ortho-image data with a single lens reflex digital camera of high speed and easy accessibility for general users. That is, the study remodeled a single lens reflex digital camera and calibrated the remodeled camera to establish 3D multispectral image information, which is the essential data of 3D spatial information. Multi-dimensional ortho-image data were collected by surveying the reference points for stereo photos, taking multispectral shots of the objects, and converting them into ortho-images.

Construction of BIM based Building 3D Spatial Information Using Terrestrial LiDAR (지상 LiDAR를 이용한 BIM 기반 건물의 3D 공간정보 구축 연구)

  • Kim, Kyeong-Min;Lee, Kil-Jae;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.1
    • /
    • pp.23-35
    • /
    • 2016
  • Recently, along with the development of IT, the non-linearity and enlargement in the response to the combination of the building industry and IT have made a wide variety in outer shapes of the buildings. So buildings need a more accurate representation using visually superior three-dimensional space information. Therefore, the study models the shapes of the other buildings in accordance with the heights. Frist of all, we measured the buildings using a Terrestrial LiDAR. Second, we obtained a high-density point cloud date of the buildings. Through this data, we made the BIM model and compared the heights of each floor's outer information layers. And then identified the BIM data status using IFC standards formats. From this data, it proposes a new 3D cadastre and the alternative for the establishment of spatial information.

Extracting Individual Number and Height of Tree using Airborne LiDAR Dataa (항공라이다 자료를 활용한 수목의 개체수 및 수고 추출)

  • Kim, Doo-Yong;Choi, Yun-Woong;Lee, Geun-Sang;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.1
    • /
    • pp.87-100
    • /
    • 2016
  • The acquisition of the forest resource information has depended on a partial sampling method or aerial photographs which demand a lot of effort and time because of the vast areas and the difficult approach. For the acquisition of the forest resource information, there have been the optical remote-sensing and the multi-spectrum image to offer only horizontal distributions of trees, but a new technological approach, such as Airborne LiDAR, is more necessary to acquire directly three dimensional information related to the forest terrains and trees' features. This paper proposes an algorithm for the forest information extraction such as trees' individual numbers and the heights of trees by using LiDAR data. Especially, this proposed algorithm adopts a region growing method for the extraction of the vegetation-point and extracts the forest information using morphological features of trees.

Comparative Analysis of Exterior Orientation Parameters of Smartphone Images Using Quaternion-Based SPR and PnP Algorithms (스마트폰 영상정보를 활용한 쿼터니언 기반 후방교회법과 PnP 알고리즘의 외부표정요소 비교 분석)

  • Kim, Namhoon;Lee, Ji-Sang;Bae, Jun-Su;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.465-472
    • /
    • 2019
  • The SPR (Single Photo Resection) is widely used as a method of estimating the EOPs (Exterior Orientation parameters) at the time of taking a photograph, but it requires an initial value and has a disadvantage of being sensitive to the initial value. In this study, we introduce quaternion-based single photo resection and PnP (Perspective-n-Point) algorithm that do not require initial values and compare the results. Photos were taken using a general smartphone, and the ground control point acquisition was based on the hybrid MMS (Mobile Mapping System) point cloud data possessed by the researchers. As a result, when the collinear condition based SPR is true value, quaternion-based SPR has higher attitude angle estimation accuracy than PnP algorithm. In case of camera position estimation, both algorithms showed accuracy within 0.8m when compared with ground control points.

Automatic Building Extraction Using LIDAR and Aerial Image (LIDAR 데이터와 수치항공사진을 이용한 건물 자동추출)

  • Jeong, Jae-Wook;Jang, Hwi-Jeong;Kim, Yu-Seok;Cho, Woo-Sug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.3 s.33
    • /
    • pp.59-67
    • /
    • 2005
  • Building information is primary source in many applications such as mapping, telecommunication, car navigation and virtual city modeling. While aerial CCD images which are captured by passive sensor(digital camera) provide horizontal positioning in high accuracy, it is far difficult to process them in automatic fashion due to their inherent properties such as perspective projection and occlusion. On the other hand, LIDAR system offers 3D information about each surface rapidly and accurately in the form of irregularly distributed point clouds. Contrary to the optical images, it is much difficult to obtain semantic information such as building boundary and object segmentation. Photogrammetry and LIDAR have their own major advantages and drawbacks for reconstructing earth surfaces. The purpose of this investigation is to automatically obtain spatial information of 3D buildings by fusing LIDAR data with aerial CCD image. The experimental results show that most of the complex buildings are efficiently extracted by the proposed method and signalize that fusing LIDAR data and aerial CCD image improves feasibility of the automatic detection and extraction of buildings in automatic fashion.

  • PDF

The 3D Modeling Data Production Method Using Drones Photographic Scanning Technology (드론 촬영 기반 사진 스캐닝 기술을 활용한 3D 모델링데이터 생성방법에 관한 연구)

  • Lee, Junsang;Lee, Imgeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.874-880
    • /
    • 2018
  • 3D modeling is extensively used in the field of architecture, machinery and contents production such as movies. Modeling is a time-consuming task. In order to compensate for these drawbacks, attempts have recently been made to reduce the production period by applying 3D scanning technology. 3D scanning for small objects can be done directly with laser or optics, but large buildings and sculptures require expensive equipment, which makes it difficult to acquire data directly. In this study, 3D modeling data for a large object is acquired using photometry with using drones to acquire the image data. The maintenance method for uniform spacing between the sculpture and the drone, the measurement method for the flight line were presented. In addition, we presented a production environment that can utilize the obtained 3D point cloud data for animation and a rendered animation result to find ways to make it in various environments.