• Title/Summary/Keyword: 절삭 공정

Search Result 275, Processing Time 0.028 seconds

A Study on Vibration Characteristics and Machining Quality in Thin-wall Milling Process of Titanium Alloy (티타늄 합금의 얇은 벽 밀링가공에서 가공방법에 따른 진동특성 및 가공품질에 관한 연구)

  • Kim, Jong-Min;Koo, Joon-Young;Jun, Cha-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.81-88
    • /
    • 2022
  • Titanium alloy (Ti-6Al-4V) has excellent mechanical properties and high specific strength; therefore, it is widely used in aerospace, automobile, defense, engine parts, and bio fields. Particularly in the aerospace field, as it has a low specific gravity and rigidity, it is used for the purpose of increasing energy efficiency through weight reduction of parts, and most have a thin-walled structure. However, it is extremely difficult to machine thin-walled shapes owing to vibration and deformation. In the case of thin-walled structures, the cutting forces and vibrations rapidly increase depending on the cutting conditions, significantly affecting the surface integrity and tool life. In this study, machining experiments on thin-wall milling of a titanium alloy (Ti-6Al-4V) were conducted for each experimental condition with different axial depths of cut, radial depth of cut, and machining sequence. The machining characteristics were analyzed, and an effective machining method was derived by a comprehensive analysis of the machined surface conditions and cutting signals.

Anomaly Detection of Machining Process based on Power Load Analysis (전력 부하 분석을 통한 절삭 공정 이상탐지)

  • Jun Hong Yook;Sungmoon Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.173-180
    • /
    • 2023
  • Smart factory companies are installing various sensors in production facilities and collecting field data. However, there are relatively few companies that actively utilize collected data, academic research using field data is actively underway. This study seeks to develop a model that detects anomalies in the process by analyzing spindle power data from a company that processes shafts used in automobile throttle valves. Since the data collected during machining processing is time series data, the model was developed through unsupervised learning by applying the Holt Winters technique and various deep learning algorithms such as RNN, LSTM, GRU, BiRNN, BiLSTM, and BiGRU. To evaluate each model, the difference between predicted and actual values was compared using MSE and RMSE. The BiLSTM model showed the optimal results based on RMSE. In order to diagnose abnormalities in the developed model, the critical point was set using statistical techniques in consultation with experts in the field and verified. By collecting and preprocessing real-world data and developing a model, this study serves as a case study of utilizing time-series data in small and medium-sized enterprises.

Analytical Evaluation of Residual Stresses in Dissimilar Metal Weld for Cast Stainless Steel Pipe and Low-Alloy Steel Component Nozzle (스테인리스주강 배관과 저합금강 기기노즐 이종금속용접부 잔류응력의 해석적 평가)

  • Park, June-Soo;Song, Min-Seop;Kim, Jong-Soo;Kim, In-Yong;Yang, Jun-Seog
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.100-100
    • /
    • 2009
  • This paper is concerned with numerical analyses of residual stresses in welds and material's susceptibility to stress corrosion cracking (SCC) for the primary piping system in nuclear power plants: Both the dissimilar metal weld (DMW) for stainless steel to low alloy steel joints and the similar metal weld (SMW) for forged stainless steel to cast stainless steel joints are considered. Thermal elasto-plastic analyses using the finite element method (FEM) are performed to predict residual stresses generated in fabrication welding and its related processes for both the DMW and SMW, including effects of quenching for cast stainless steel piping, machining of the DMW root, and grinding of the SMW root. As a result, the effect of quenching should be included in the evaluation of residual stresses in the SMW for the cast stainless steel piping. It is deemed that residual stresses in both the DMW and SMW would not affect the SCC susceptibility of the welds providing that the welding processes are completed without any weld repair on the inside wall of the joint. However, the grinding process if performed on the safe-end to piping weld, would produce a high level of residual stresses in the inner surface region and thus a stress improvement process (e.g. buffing) should be considered to reduce susceptibilities to SCC.

  • PDF

Development of Micro Rocket Using Mechanical Micro Machining (기계식 마이크로 가공을 이용한 마이크로 로켓의 개발)

  • Baek,Chang-Il;Chu,Won-Sik;An,Seong-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.32-37
    • /
    • 2003
  • The trend of miniaturization has been applied to the research on micro rockets resulting in prototype rockets fabricated by MEMS processes. In this paper, the development of three-dimensional micro rockets using micro milling as well as the results of combustion and flight tests are discussed. The body of rocket was made of 6061 aluminum cylinder. The three-dimensional micro nozzles were fabricated on brass by micro endmill with 127${\mu}m$ diameter. Two different micro nozzles were fabricated, one with 1.0mm of throat diameter and the other with 0.5mm. The total mass of rocket was 7.32g and that of propellant was 0.65g. The thrust-to-weight ratio was between 1.58 and 1.74, and the flight test with 45 degree launch angle form the ground resulted in 46m-53m of horizontal flight distance

Design and Manufacturing of Robotic Dolphin with Variable Stiffness Mechanism (가변강성 메커니즘을 적용한 로봇 돌고래 설계 및 제작)

  • Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.103-110
    • /
    • 2020
  • Bio-inspired underwater robots have been studied to improve the dynamic performance of fins, such as swimming speed and efficiency, which is the most basic performance. Among them, bio-inspired soft robots with a compliant tail fin can have high degrees of freedom. On the other hand, to improve the driving efficiency of the compliant fins, the stiffness of the tail fin should be changed with the driving frequency. Therefore, a new type of variable stiffness mechanism has been developed and verified. This study, which was inspired by the anatomy of a real dolphin, assessed a process of designing and manufacturing a robotic dolphin with a variable stiffness mechanism. By mimicking the vertebrae of a dolphin, the variable stiffness driving part was manufactured using subtractive and additive manufacturing. A driving tendon was placed considering the location of the tendon in the actual dolphin, and the additional tendon was installed to change its stiffness. A robotic dolphin was designed and manufactured in a streamlined shape, and the swimming speed was measured by varying the stiffness. When the stiffness of the tail fin was varied at the same driving frequency, the swimming speed and thrust changed by approximately 1.24 and 1.5 times, respectively.

A Study on the Sintering of Diamond Composite at Low Temperature Under Low Pressure and its Subsequent Conductive PVD Process for a Cutting Tool (절삭 공구용 다이아몬드 복합체의 저온 저압 소결 합성 및 후속 도전형 박막 공정 특성 연구)

  • Cho, Min-Young;Ban, Kap-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • Generally, high-temperature, high-pressure, high-priced sintering equipment is used for diamond sintering, and conductivity is a problem for improving the surface modification of the sintered body. In this study, to improve the efficiency of diamond sintering, we identified a new process and material that can be sintered at low temperature, and attempted to develop a composite thin film that can be discharged by doping boron gas to improve the surface modification of the sintered body. Sintered bodies were sintered by mixing Si and two diamonds in different particle sizes based on CIP molding and HIP molding. In CVD deposition, CVD was performed using WC-Co cemented carbide using CH4 and H2 gas, and the specimen was made conductive using boron gas. According to the experimental results of the sintered body, as the Si content is increased, the Vickers hardness decreases drastically, and the values of tensile strength, Young's modulus and fracture toughness greatly increase. Conductive CVD deposited diamond was boron deposited and discharged. As the amount of boron added increased, the strength of diamond peaks decreased and crystallinity improved. In addition, considering the release processability, tool life and adhesion of the deposition surface according to the amount of boron added, the appropriate amount of boron can be confirmed. Therefore, by solving the method of low temperature sintering and conductivity problem, the possibility of solving the existing sintering and deposition problem is presented.

Control of Polarity by Magnetic Array Table in Magnetic Abrasive Polishing Process (자기연마가공에서 마그네틱 어레이 테이블에 의한 극성 제어)

  • Gang, Han-Sung;Kim, Tae-Hui;Kawk, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1643-1648
    • /
    • 2010
  • It is very difficult to polish non-magnetic materials by the magnetic abrasive polishing (MAP) process because magnetic force is required for MAP, but the magnetic force for non.magnetic materials is low. In this study, we aimed to develop a magnetic array table and control the magnetic polarity such that the magnetic force can be increased for the MAP of non-magnetic materials. The newly designed magnetic array table has 32 electro magnets, and the magnetic polarity of each electro-magnet can be easily controlled by changing the electric polarity. It was analytically verified that the magnetic flux density of non-magnetic materials can be varied by varying the applied magnetic polarity.

Review on additive manufacturing of dental materials (치과용 재료의 적층가공에 대한 문헌고찰)

  • Won, Sun;Kang, Hyeon-Goo;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • Additive manufacturing (AM) for dental materials can produce more complex forms than conventional manufacturing methods. Compared to milling processing, AM consumes less equipment and materials, making sustainability an advantage. AM can be categorized into 7 types. Polymers made by vat polymerization are the most suitable material for AM due to superior mechanical properties and internal fit compared to conventional self-polymerizing methods. However, polymers are mainly used as provisional restoration due to their relatively low mechanical strength. Metal AM uses powder bed fusion methods and has higher fracture toughness and density than castings, but has higher residual stress, which requires research on post-processing methods to remove them. AM for ceramic use vat polymerization of materials mixed with ceramic powder and resin polymer. The ceramic materials for AM needs complex post-processing such as debinding of polymer and sintering. The low mechanical strength and volumetric accuracy of the products made by AM must be improved to be commercialized. AM requires more research to find the most suitable fabrication process conditions, as the mechanical properties and surface of any material will vary depending on the processing condition.

Preparation and Characterization of Tungsten Carbide Using Products of Hard Metal Sludge Recycling Process (초경합금 슬러지 재활용 공정 산물을 활용한 텅스텐 탄화물 제조 및 특성 평가)

  • Kwon, Hanjung;Shin, Jung-Min
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.19-25
    • /
    • 2022
  • In this study, tungsten carbide (WC) powder was prepared using a novel recycling process for hard metal sludge that does not use ammonium paratungstate. Instead of ammonia, acid was used to remove the sodium and crystallized tungstate, resulting in the formation of tungstic acid (H2WO4). The WC powder was successfully synthesized by the carbothermal reduction of tungstic acid through H2O decomposition, reduction of WO3 to W, and formation of WC. The carbon content and holding time at the carbothermal reduction temperature were optimized to remove free carbon from the WC powder. As a result, most of the free carbon in the WC powder prepared from sludge was removed, and the content of free carbon in the synthesized WC powder was lower than that in commercial WC powder. Moreover, the crystallite size of WC prepared from H2WO4 was much smaller than that of commercial micron-sized WC powder produced from APT. The small crystallite size of WC induces grain growth during the sintering of the WC-Co composite; thus, a WC-Co composite with large WC grains was fabricated using the WC powder prepared from H2WO4. The large WC grains affected the mechanical properties of the WC-Co composite. Further, due to the large grain size, the WC-Co composite fabricated from H2WO4 exhibited a higher toughness than that of the WC-Co composite prepared from commercial WC powder.

A Case of Giant Cell Interstitial Pneumonia (거대세포 간절성 폐렴(Giant Cell Interstitial Pneumonia) 1예)

  • Kang, Kyeong-Woo;Park, Sang-Joon;Suh, Gee-Young;Han, Joung-Ho;Chung, Man-Pyo;Kim, Ho-Joong;Kwon, O-Jung;Rhee, Chong-H.;Choi, Jae-Wook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.2
    • /
    • pp.260-267
    • /
    • 2000
  • Giant cell interstitial pneumonia. a synonym for hard metal pneumoconiosis, is a unique form of pulmonary fibrosis resulting from an exposure to hard metal dust. A case of biopsy-proved giant cell interstitial pneumonia in the absence of appropriate history of exposure to hard metal dust is reported. The patient presented with clinical features of chronic interstitial lung disease or idiopathic pulmonary fibrosis. He worked in a chemical laboratory at a fertilizer plant, where he had been exposed to various chemicals such as benzene and toluene. He denied having any other hobby in his house or job at work, which may have exposed him hard metal dust. High-resolution CT scan revealed multi-lobar distribution of ground glass opacity with peripheral and basal lung predominance. The retrieved fluid of bronchoalveolar lavage contained asbestos fiber and showed neutrotphil predominance. Surgical lung biopsy was performed for a definite diagnosis. Lung specimen showed alveolar infiltration of numerous multinucleated giant cells with mild interstitial fibrosis. Upon detailed examination of the lung tissue, one asbestos body was found. An analysis for mineral contents in lung tissue was performed. Compared with the control specimen, the amount of cobalt and several hard metal components in the lung tissue of this patient was ten times higher. We speculated that the inconsistency between occupational history and the findings of pathologic and mineralogical analyses could be explained by the difference in individual immunologic reactivity to hard metal dust despite the relatively small amount of unrecognized environmental exposure(ED: It's hard to understand what this phrase is trying to say).

  • PDF