• Title/Summary/Keyword: 절삭효율

Search Result 109, Processing Time 0.035 seconds

Optimization of the Tool Life Prediction Using Genetic Algorithm (유전 알고리즘을 이용한 공구 수명 예측 최적화)

  • Kong, Jung-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.338-343
    • /
    • 2018
  • Recently, a computer numerical control (CNC) machine is used widely for mold making in various industries. In the operation of a CNC machine, the production quality and safety of workers are becoming increasingly important as the product process increases. A variety of tool life prediction studies has been conducted to standardize the quality of production and improve reproducibility. When the tool life is predicted using the conventional tool life equation, there is a large error between the experimental result and result by the conventional tool life equation. In this paper, an algorithm that can predict the precise tool life was implemented using a genetic algorithm.

Machine Tool State Monitoring Using Hierarchical Convolution Neural Network (계층적 컨볼루션 신경망을 이용한 공작기계의 공구 상태 진단)

  • Kyeong-Min Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.84-90
    • /
    • 2022
  • Machine tool state monitoring is a process that automatically detects the states of machine. In the manufacturing process, the efficiency of machining and the quality of the product are affected by the condition of the tool. Wear and broken tools can cause more serious problems in process performance and lower product quality. Therefore, it is necessary to develop a system to prevent tool wear and damage during the process so that the tool can be replaced in a timely manner. This paper proposes a method for diagnosing five tool states using a deep learning-based hierarchical convolutional neural network to change tools at the right time. The one-dimensional acoustic signal generated when the machine cuts the workpiece is converted into a frequency-based power spectral density two-dimensional image and use as an input for a convolutional neural network. The learning model diagnoses five tool states through three hierarchical steps. The proposed method showed high accuracy compared to the conventional method. In addition, it will be able to be utilized in a smart factory fault diagnosis system that can monitor various machine tools through real-time connecting.

A Experimental Study on the Structural Performance of Column Spliceswith Metal Touch Subjected to Axial Force and Bending Moment (압축력과 휨모멘트를 받는 메탈 터치된 기둥 이음부의 구조성능에 대한 실험적 연구)

  • Hong, Kap Pyo;Kim, Seok Koo;Lee, Joong Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.633-644
    • /
    • 2008
  • The structural framework design uses high-strength bolts and welding in column splices. However, for the column under high compression, the number of the required high-strength bolts can be excessive and the increase of welding results in difficulty of quality inspection, the transformation of the structural steels, and the increase of erection time. According to the AISC criteria, when columns have bearing plates, or they are finished to bear at splices, there shall be sufficient connections to hold all parts securely in place. The Korean standard sets the maximum 25% of the load as criteria. Using direct contact makes it possible to transfer all compressive force through it. The objective of this study is to examine the generally applied stress path mechanism of welded or bolted columns and to verify the bending moment and compression transfer mechanism of the column splice according to metal touch precision. For this study,22 specimens of various geometric shapes were constructed according to the change in the variables for each column splice type, which includes the splice method, gap width, gap axis, presence or absence of splice material, and connector type. The results show that the application of each splice can be improved through the examination of the stress path mechanism upon metal contact. Moreover, the revision of the relative local code on direct contact needs to be reviewed properly for the economics and efficiency of the splices.

A study on the optimum cutter spacing ratio according to penetration depth using decision tree-based and SVM regressions (의사결정나무 기반 회귀분석과 SVM 회귀분석을 이용한 커터 관입깊이에 따른 최적 커터간격 비 연구)

  • Lee, Gi-Jun;Ryu, Hee-Hwan;Kwon, Tae-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.501-513
    • /
    • 2020
  • Cutter cutting tests for the cutter placement in the cutter head are being conducted through various studies. Although the cutter spacing at the minimum specific energy is mainly reflected in the cutter head design, since the optimum cutter spacing at the same cutter penetration depth varies depending on the rock conditions, studies on deciding the optimum cutter spacing should be actively conducted. The machine learning techniques such as the decision tree-based regression model and the SVM regression model were applied to predict the optimum cutter spacing ratio for the nonlinear relationship between cutter penetration depth and cutter spacing. Since the decision tree-based methods are greatly influenced by the number of data, SVM regression predicted optimum cutter spacing ratio according to the penetration depth more accurately and it is judged that the SVM regression will be effectively used to decide the cutter spacing when designing the cutter head if a large amount of data of the optimum cutter spacing ratio according to the penetration depth is accumulated.

Study of laser welding for differential case & ring gear (레이저 용접에 관한 디퍼렌셜 케이스와 링기어 구조에 관한 고찰)

  • Chung, Taek-Min;Kim, Su-Lae;Rhee, Se-Hun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.121-121
    • /
    • 2009
  • 자동차는 코너 주행 시 In-corner와 Out-corner 의 바퀴 궤적이 달라지므로, 특별한 장치가 없이 좌우 구동 측의 바퀴가 같은 속도로 회전을 하게 되면 정상적인 주행이 불가능하다. 따라서 정상적인 코너 주행이 가능 하려면, 코너 안쪽 바퀴보다 바깥쪽 바퀴가 더 빨리 회전해야 하며 이러한 회전 차를 보상받지 못할 경우 바깥쪽 바퀴가 끌리는 현상이 발생하는데 이를 방지하기 위해 디퍼렌셜 기어가 필요하다. 현재 디퍼렌셜 기어는 디퍼렌셜 케이스와 링기어를 볼트로 체결하는 조립 공법을 통해 생산되고 있다. 하지만 볼트 체결 공법은 조립을 위한 볼트와 볼트 체결을 위한 플랜지와 볼팅을 위한 홀을 가공하는 공정이 필요하기 때문에 재료비 절감 및 생산 효율 향상에 매우 불리하고 볼트체결을 위한 부분 때문에 불필요한 무게가 증가하게 된다. 따라서 본 연구에서는 이러한 기계적 체결 방식을 레이저 용접 방식으로 대체하여 재료비를 절감하고 무게 저감을 통해 주행성능을 향상시키고자 하였다. 링기어의 소재는 침탄처리강(SCM420H)이며 디퍼렌셜 케이스의 소재는 주철(GCD500)을 사용하고 있다. 주철은 용접시 용접부와 열영향부에서 마르텐사이트 조직과 레데브라이트, 시멘타이트 조직이 생성되며 고탄소 모재의 탄소 확산으로 인한 부분 혼합영역에서 탄소 합금이 생성되어 균열이 발생하는 등 용접성이 매우 좋지 않은 것으로 알려져 있다. 이러한 주철의 난용접성을 해결하는 방법으로는 고탄소 모재 용접시 발생하는 탄소의 확산을 억제하거나 예열이나 후열 처리를 통한 냉각 속도의 제어하는 방법과 오스테나이트 안정화 원소를 첨가한 필러와이어를 사용하여 용접시 마르텐사이트와 시멘타이트의 성장을 방해하는 방법 등이 이용되고 있다. 본 연구에서는 예열처리나 후열처리를 통한 주철의 용접법은 대량 생산을 통한 원가절감을 노리는 자동차 업계의 특성에 비추어 볼 때 비용이나 프로세스 구성 면에서 적용하는 것이 어려울 것이라 판단하여 Ni-base filler metal을 통한 주철의 용접법을 선택하였고 그 결과 실차에 적용하기 위한 비틀림 강성 테스트나 내구 테스트는 통과하였으나 NVH 테스트 결과 볼팅 체결 방식에 비하여 소음이 커지는 문제가 발생하고 링기어의 HAZ부가 고경화 되는 문제가 발생하였다. 때문에 용입깊이를 초기 시제품인 5mm에서 4mm로 변경시켜 입열량 감소 및 용접변형을 줄여 소음 문제를 해결하고자 하였으며 링기어의 침탄층을 1mm 절삭하여 링기어 HAZ부의 고경화 문제를 해결하고자 하였다. 이러한 용접 구조 변경이 용접변형 및 강성과 피로에 미치는 영향력을 알아보고자 용접 및 열처리 상용 소프트웨어인 SYSWELD, 구조해석 상용소프트웨어인 NX_NASTRAN, 피로 해석 상용 소프트웨어인 FEMFAT을 이용하여 시뮬레이션 하였고 실제 구조 변경한 용접 시제품과 비교, 분석하였다.

  • PDF

Effect of milling and sintering process on integrity of zirconia prosthesis: a literature review (밀링과 소결과정이 지르코니아 보철물의 완성도에 미치는 영향에 관한 문헌고찰)

  • Lee, Kiun;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.3
    • /
    • pp.127-137
    • /
    • 2022
  • Zirconia is fabricated through various processes. Each element in fabricating process can affect the physical properties of the definitive prosthesis. In particular, both the milling process and the sintering process can affect the final integrity of the zirconia prosthesis. Most of the milling machines adopt the ultra-precision 5-axis machining method, and the results vary depending on which milling method was used and how the milling equipment was managed. Milling blocks are selected according to cutting efficiency and aesthetic reproducibility. The sintering method can affect the grain growth and optical properties, and an accurate evaluation can be made only with additional research on the recent speed sintering procedure. Not only the sintering temperature but also the temperature holding time can affect the quality of definitive prosthesis.

Application of Eddy Current Sensor for Measurement of TBM Disc Cutter Wear (TBM 디스크커터의 마모량 측정을 위한 와전류센서의 적용 연구)

  • Min-Sung Park;Min-Seok Ju;Jung-Joo Kim;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.534-546
    • /
    • 2023
  • If the disc cutter is excessively worn or damaged, it becomes incapable of rotating and efficiently cutting rockmass. Therefore, it is important to appropriately manage the replacement cycle of the disc cutter based on its degree of wear. In general, the replacement cycle is determined based on the results of manual inspection. However, the manual measurements has issues related to worker safety and may lead to inaccurate measurement results. For these reasons, some foreign countries are developing the real-time measurement system of disc cutter wear by using different sensors. The ultrasonic sensors, eddy current sensors, magnetic sensors, and others are utilized for measuring the wear amount of disc cutters. In this study, the applicability of eddy current sensors for real-time measurement of wear amount in TBM disc cutters was evaluated. The distance measurement accuracy of the eddy current sensor was assessed through laboratory tests. In particular, the accuracy of eddy-current sensor was evaluated in various environmental conditions within the cutterhead chamber. In addition, the measurement accuracy of the eddy current sensor was validated using a 17-inch disc cutter.

A Study of Radon Reduction using Panel-type Activated Carbon (판재형 활성탄을 이용한 라돈 저감 연구)

  • Choi, Il-Hong;Kang, Sang-Sik;Jun, Jae-Hoon;Yang, Seung-Woo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.297-302
    • /
    • 2017
  • Recently, building materials and air purification filters with eco-friendly charcoal are actively studying to reduce the concentration of radon gas in indoor air. In this study, radon reduction performance was assessed by designing and producing new panel-type activated carbon filter that can be handled more efficiently than conventional charcoal filters, which can reduce radon gas. For the fabrication of our panel-type activated carbon filter, first the pressed molding product after mixing activated carbon powder and polyurethane. Then, through diamond cutting, the activated carbon filter of 2 mm, 4 mm and 6 mm thickness were fabricated. To investigate the physical characteristics of the fabricated activated carbon filter, a surface area and flexural strength measurement was performed. In addition, to evaluate the reduction performance of radon gas in indoor, the radon concentration of before and after the filter passes from a constant amount of air flow using three acrylic chambers was measured, respectively. As a result, the surface area of the fabricated activated carbon was approximately $1,008m^2/g$ showing similar value to conventional products. Also, the flexural load was found to have three times higher value than the gypsum board with 435 N. Finally, the radon reduction efficiency from indoor gas improved as the thickness of the activated carbon increases, resulting in an excellent radon removal rate of more than 90 % in the 6 mm thick filter. From the experimental results, the panel-type activated carbon is considered to be available as an eco-friendly building material to reduce radon gas in an enclosed indoor environment.

Comparison on the Fracture Strength Depending on the Fiber Post and Core Build-up (섬유 강화 포스트와 코어 축성 방법에 따른 파절 강도에 관한 비교)

  • Lee, Ja-Hyoung;Shin, Sooyeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.3
    • /
    • pp.225-235
    • /
    • 2009
  • A common procedure of restoration of endodonticlly treated tooth with fiber-reinforced post is followed by core build-up after post cementation. However, this technique is complex and time-consuming. The aim of this study was to compare fracture strength of premolar, restored with various methods of core fabrications on fiber-reinforced posts and casting metal restoration. Forty five freshly extracted human mandibular premolars were obtained and devided into 5 groups acconding to the type of post and methods of core build-up. In Group A, D.T. $Light-post^{(R)}$ were cemented with $DUO-LINK^{TM}$ and then $LIGHT-CORE^{TM}$ was used for core restoration. In Group B, D.T. $Light-post^{(R)}$ and $DUO-LINK^{TM}$ were used for cementing in the postspace, and $DUO-LINK^{TM}$ was used again for core restoration. In Group C, $Light-post^{(R)}$ bonding and the core build-up were performed simultaneously by using $DUO-LINK^{TM}$. In Group D, $LuxaPost^{(R)}$ was bonded by using $LuxaCore^{(R)}-Dual$. Again, $LuxaCore^{(R)}-Dual$ was used for core restoration. In Group E, $LuxaPost^{(R)}$ bonding and the core build-up were performed simultaneously by using $LuxaCore^{(R)}-Dual$. Axial reduction was formed parallelly as possible and 45 degree bevel was made at buccal occlusal surface. Crowns were fabricated and cemented. Each tooth was embedded in self-curing acrylic resin to the level of 2mm below the CEJ. Specimens were fixed on universal testing machin such that the axis of the tooth was at 45 degree inclination to the horizontal plane, and compressive force was applied at a crosshead speed of 1mm/min until failure occurred. The mean fracture strength was the highest in group A followed by descending order in group B, D, E and C. However, there were no statistically significant differences between groups with regard to the fracture strength. The type of the post or build-up methods of the core does not seem to influence the fracture strength.