• Title/Summary/Keyword: 절삭성능

Search Result 195, Processing Time 0.029 seconds

A Study on the Evaluation of End Mills for High Speed Machining (고속용 엔드밀의 성능평가에 관한 연구)

  • 이정길;유중학;김문기;국정한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.833-837
    • /
    • 2000
  • The purpose of this study is an evaluation of end mills to develop appropriate tools for the high speed machining. First of all, several flat end mills which are produced by different makers are selected to analyze the performances of the tools. Experimental works are also executed to measure cutting force, tool wear and surface roughness for different cutting conditions. And then the results are compared and analyzed for developing optimal cutting tool in the high speed condition. Especially, analysis about tool wear is introduced in this research.

  • PDF

A Study on the Performance of CBN Tools in the Machining of Hardened Die-Materials by High-Speed face Milling (금형용 고경도재의 고속정면밀링 가공시 CBN 공구의 성능에 관한 연구)

  • 조성실;임근영;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.26-30
    • /
    • 1996
  • This paper presents the performance of CBN tools in the machining of hardened die-materials, SKD11 and SKD61 steel with HRC 50, by high-speed face milling. Generally, grinding or EDM is being used in machining of hardened materials but the cost is very high. If those can be replaced by cutting, it will be a greatly economical advantage. CBN tool has been recognized as an effective tool in turning, but it has not been in milling. So wear and surface roughness mode of CBN tool for hardened SKD11 and SKD61 steel were investigated by high-speed face milling in this study Also the relation between cutting force and wear mode of CBN tools was investigated.

  • PDF

A Study on the Control of Micro Drilling by the GA-based Fuzzy Interence (GA-based Fuzzy 추론에 의한 미세드릴가공의 제어에 관한 연구)

  • 백인환;정우섭;권혁준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.64-68
    • /
    • 1995
  • 미세드릴가공은 최근의 공업제품의 소형 경량화 추세로 인해 수요가 급증하고 있으나 가공시에 있어서 많은 난 점이 존재 하기 때문에 강도 높은 가공기와 숙련된 가공전문가를 필요로 한다. 본 연구에서는 미세드릴가공을 수행하기 위해 우선 절삭상태 검출방법으로써 실용적이고 가공상황에 간섭을 일으키지 않는 주축용 모터의 전류 값을 이용하며 제어기 설계를 위해 퍼지추론과 유전알고리즘 이론을 도입한다. 이러한 지능형 가공방법을 미세 드릴가공에 구현하기 위해서 오프라인으로 안정한 가공조건을 초기화한 다음 퍼지제어기를 이용하여 일정한 절삭력을 유지할 수 있도록 실시간으로 이송속도를 제어하며 가공상황 변동에 따른 적절한 퍼지규칙을 자기 동조하는 최적화 알고리즘을 제안한 후 실제가공을 통하여 미세드릴가공의 특성과 제어기의 성능을 평가한다.

  • PDF

Cutting characteristics of in situ toughened $SiC-Si_3N_4$ composite (현장인화 $SiC-Si_3N_4$ 복합재료의 절삭성능 평가)

  • 김경재;박준석;권원태;김영욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.386-391
    • /
    • 2000
  • It is known that Si$_3$N$_4$ceramic insert has less hardness than A1$_2$O$_3$ceramic insert. But Si$_3$N$_4$ceramic insert has not only high toughness and strength but also low thermal expansion coefficient, which makes it has longer tool life under thermal stress condition. In this study, commercial Si$_3$N$_4$ ceramic insert and home-made SiC-Si$_3$N$_4$ceramic insert which has different sintering time and chemical composition is tested under various cutting conditions. The experimental result is compared in terms of tool life and cutting force. Generally, As the cutting speed and the feed rate increased, the cutting force and the flank wear increased too. The performance of SiC-Si$_3$N$_4$ceramic insert shows the possibility to be a new ceramic tool.

  • PDF

Adaptive Control for Cutting Force Regulating in Turning Operation (선삭가공에서 절삭력을 일정하게 유지하기 위한 적응제어)

  • 노상현;김진락;김교형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.69-77
    • /
    • 1993
  • Adaptive Control is applied to regulate cutting force in turning operation under varying cutting conditions. Regulation is achieved primarily by adjusting feedrate. Such control leads to better machine utilization and increased tool life. The modeling of adaptive control system in turning operation is presented. The experimental results show that the adaptive PI controller is stable and performs more effective force control over wide range of cutting conditions as compared with the fixed gain PI controller.

Mechanical Properties and Cutting Performance of Ti(CN) Based Carbonitride Ceramics (Ti(CN)기 탄화물질 세라믹스의 기계적 특성과 절삭성능)

  • Park, Dong-Su;Lee, Yang-Du;Jeong, Tae-Ju;Gang, Sin-Hu
    • 연구논문집
    • /
    • s.28
    • /
    • pp.193-207
    • /
    • 1998
  • Fully dense THCN) based carbonitride ceramics were fabricated by pressureless sintering. During sintering, solid solutions were formed from the ceramic ingredients. The ceramics exhibited microvickers hardness of 1560-2050kgf/mm2, fracture toughness of 3.0-5.4 MPa $m^(1/2)$, and three point flexural strength of 645-1072 MPa. Some of the ceramics were shaped in a cutting tool, and the cutting performance was evaluated. In case of cutting SCM440 alloy steel, the ceramics showed better performance than the commercially available alumina-titanium carbide ceramic cutting tool. Considering the excellent productivity of pressureless sintering compared with other densification methods and their cutting performance, this new class of ceramics are very promising for wear resistant applications.

  • PDF

Prediction of Machining Performance using ANN and Training using ACO (ANN을 이용한 절삭성능의 예측과 ACO를 이용한 훈련)

  • Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.125-132
    • /
    • 2017
  • Generally, in machining operations, the required machining performance can be obtained by properly combining several machining parameters properly. In this research, we construct a simulation model, which that predicts the relationship between the input variables and output variables in the turning operation. Input variables necessary for the turning operation include cutting speed, feed, and depth of cut. Surface roughness and electrical current consumption are used as the output variables. To construct the simulation model, an Artificial Neural Network (ANN) is employed. With theIn ANN, training is necessary to find appropriate weights, and the Ant Colony Optimization (ACO) technique is used as a training tool. EspeciallyIn particular, for the continuous domain, ACOR is adopted and athe related algorithm is developed. Finally, the effects of the algorithm on the results are identified and analyzsed.

A Basic Study on the Evaluation of Flat End-mill Coated TiAlN (TiAlN코팅 평 엔드밀의 성능평가에 관한 기초 연구)

  • 유중학;국정한;김문기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.130-136
    • /
    • 2001
  • The purpose of this study is an evaluation of flat end mills to develop appropriate tools for the high speed machining. First of all, several flat end mills which are produced by different makers are selected to analyze the performances of the tools. Experimental works are also executed to measure cutting farce, tool wear and surface roughness for different cutting conditions. And then the results are compared and analyzed for developing optimal cutting tool in the high speed condition.

  • PDF

Cutting Performance of TiAlN coated WC Insert Tip (TiAlN을 코팅한 WC공구의 절삭성능에 관한 연구)

  • 김형자;최현철;이규용
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.281-286
    • /
    • 2001
  • TiAIN was deposited onto ISO P2O Cutting Insert Tip substrate by FVAS at the substrate temperature of 80$^{\circ}C$. Cutting and wear test have been performed with TiAIN coated and uncoated WC cutting tools, respectively. Uncoated WC cutting tool has been tested under similar cutting condition for comparison. Cutting force and tool wear of coated and uncoated carbide cutting tools were investigated by cutting length. In cutting test, cutting force of the coated insert tip was larger than the uncoated insert tip by tool wear. Configuration and wear of the coated tool were more stable and resistant than the uncoated. In tool life by the tool wear, the coated cutting tool life was rather longer than the uncoated when tested at high speed (V=250 m/min) than low speed (V=200 m/min), Cutting force, tool wear and life were analysised by tool dynamometer amp(3ch) and oscilloscope.

  • PDF

Performance estimation of conical picks with slim design by the linear cutting test (II): depending on skew angle variation (선형절삭시험에 의한 슬림 코니컬커터의 절삭성능 평가(II): Skew Angle 변화에 의한 결과)

  • Choi, Soon-Wook;Chang, Soo-Ho;Lee, Gyu-Phil;Park, Young-Taek
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.585-597
    • /
    • 2014
  • In this study, the cutter acting forces were measured by 3-directional load cell at two different skew angles and various S/d ratios during a series of linear cutting tests using a slim conical pick. The analysis for cutting performance were carried out after calculating average values of the measured results. The increase of penetration depth results in the decrease of specific energy. And the variations of the cutter acting forces depending on penetration depth in the case of 6 degree skew angle were smaller than in the case of 0 degree skew angle. From this results, 6 degree skew angle is more effective than 0 degree skew angle in designing optimal specifications of cutting head. In addition, $F_c/F_n$ under the setting of 6 degree skew angle was smaller than under the setting of 0 degree skew angle. However, it should be considered that the increase of cutter acting force in the cutting direction accompanied the increase of driving force in the case of the setting for 6 degree skew angle.