• Title/Summary/Keyword: 절리성 암반

Search Result 307, Processing Time 0.027 seconds

A Comparison of Barton-Bandis Joint Model and Mohr-Coulomb Joint Model for Tunnel Stability Analysis with DEM (개별요소법을 이용한 터널 안정성 해석에 있어 Barton-Bandis 절리 모델과 Mohr-Coulomb절리 모델의 비교)

  • 이성규;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.167-173
    • /
    • 2001
  • The joint model has influence on the results of discontinuum analysis. In this study the results of discontinuum analysis with Barton-Bandis joint model(BB model) and with Mohr-Coulomb joint model(MC model) are compared. The results of continuum analysis under the same condition are compared with the results of discontinuum analysis to investigate the behavior of rockmass around tunnel. The result of continuum analysis and that of discontinuum analysis with BB model show similar distribution of displacement and stress. On the other hand, the discontinuum analysis with MC model shows different displacement distribution and stress distribution. Moreover, the displacement and minor principal stress of the discontinuum analysis with MC model are smaller than those of continuum analysis, although the joints are explicitly considered in the discontinuum analysis. These results are originated from the limitation of MC model in simulating joint deformation behavior, especially the assumption of constant dilation jingle independent of it)int 7hear displacement.

  • PDF

Estimation of Mechanical Representative Elementary Volume and Deformability for Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 역학적 REV 및 변형특성 추정사례)

  • Um, Jeong-Gi;Ryu, Seongjin
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.59-72
    • /
    • 2022
  • This study employed a 3-D numerical analysis based on the distinct element method to estimate the strength and deformability of a Cretaceous biotite granitic rock mass at Gijang, Busan, Korea. A workflow was proposed to evaluate the scale effect and the representative elementary volume (REV) of mechanical properties for fractured rock masses. Directional strength and deformability parameters such as block strength, deformation modulus, shear modulus, and bulk modulus were estimated for a discrete fracture network (DFN) in a cubic block the size of the REV. The size of the mechanical REV for fractured rock masses in the study area was determined to be a 15 m cube. The mean block strength and mean deformation modulus of the DFN cube block were found to be 52.8% and 57.7% of the intact rock's strength and Young's modulus, respectively. A constitutive model was derived for the study area that describes the linear-elastic and orthotropic mechanical behavior of the rock mass. The model is expected to help evaluate the stability of tunnels and underground spaces through equivalent continuum analysis.

A Study on Reliability of Joint Orientation Measurements in Rock Slope using 3D Laser Scanner (3D Laser Scanner를 이용한 암반사면의 절리방향 측정의 신뢰성에 관한 연구)

  • Park, Sun-Hyun;Lee, Su-Gon;Lee, Boyk-Kyu;Kim, Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • We must precisely investigate the mechanical characters of rock to design rock slope safely and efficiently. But the method of clinometer has some disadvantages. So, we need a new measurement that can replace the method of clinometer. In this study, we analyze the reliability of joint orientation measurements in rock slope using the 3D laser scanner and program Split-FX that is a point cloud data analysis software. We could acquire the 495 pieces joint data through the automatic extraction of features. And we confirmed that there were some errors occurred with ${\pm}4^{\circ}$ of dip and ${\pm}5^{\circ}$ of dip direction. Generally, the method of clinometer has ${\pm}5^{\circ}$ and ${\pm}10^{\circ}$ error ranges of the joint orientation(dip/dip direction) that are the results of the advance research. Therefore, we analyzed the method of 3D laser scanner, and it is found to be efficient, reliable. This method is expected to mend the disadvantages of Clinometer method.

Development of Joint Survey System using Photogrammetric Technique (사진측량기법에 의한 절리조사 시스템 개발)

  • Son, Youngjin;Kim, Jaedong;Jeong, Wansoon;Kim, Jong-Hoon;Kim, Ki-Seog
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.55-66
    • /
    • 2014
  • In this study, a joint survey system was developed to efficiently analyze geometrical characteristics of joint structures in rock mass using photogrammetric technique. The system includes both hardware and software. The hardware consists of a high resolution image camera for photographing image of a surface of rock body, a direction controlling system for adjusting the attitude of camera, and a digital compass for measuring the rotation angle of camera. The software was also developed in order to analyze the orientation, density, mean length of joints revealed on the images of rock surfaces. The software developed in this study was named as JointeXtractor. As applying this system into several field measurements, the orientation, density, mean length of joints could be quantitatively measured through analyzing the images of rock surfaces, in which the case of a difficult-to-access area was especially included for the test of the system.

Effect of Joint Geometry on Anisotropic Deformability of Jointed Rock Masses (절리의 기하학적 속성이 절리성 암반의 이방적 변형 특성에 미치는 영향)

  • Ryu, Seongjin;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.271-285
    • /
    • 2020
  • In this study, a numerical experiment related to the stress-strain analysis was performed on 3-D discrete fracture network(DFN) systems based on the distinct element method to evaluate the effect of joint geometry on deformability of jointed rock masses. Using one or two joint sets with deterministic orientation, a total of 12 3-D DFN blocks having 10m cube domain were generated with different joint density and size distribution. Directional deformation modulus of the DFN cube blocks were estimated along the axis directions of 3-D cartesian coordinate. In addition, deviatoric stress directions were chosen at every 30° of trend and plunge in 3-D for some DFN blocks to examine the variability of directional deformation modulus with respect to joint geometry. The directional deformation modulus of the DFN block were found to reduce with the increase of joint size distribution. The increase in joint density was less likely to have a significant effect on directional deformation modulus of the DFN block in case of the effect of rock bridges was relatively large because of short joint size distribution. It, however, was evaluated that the longer the joint size, the increase in the joint density had a more significant effect on the anisotropic deformation modulus of the DFN block. The variation of the anisotropic deformation modulus according to the variations in joint density and size distribution was highly dependent on the number of joint sets and their orientation in the DFN block. Finally, this study addressed a numerical procedure for stress-strain analysis of jointed rock masses considering joint geometry and discussed a methodology for practical application at the field scale.

Rock Mechanics Site Characterization for HLW Disposal Facilities (고준위방사성폐기물 처분시설 부지에 대한 암반역학 부지특성화)

  • Um, Jeong-Gi;Hyun, Seung Gyu
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The mechanical and thermal properties of the rock masses can affect the performance associated with both the isolating and retarding capacities of radioactive materials within the deep geological disposal system for High-Level Radioactive Waste (HLW). In this study, the essential parameters for the site descriptive model (SDM) related to the rock mechanics and thermal properties of the HLW disposal facilities site were reviewed, and the technical background was explored through the cases of the preceding site descriptive models developed by SKB (Swedish Nuclear and Fuel Management Company), Sweden and Posiva, Finland. SKB and Posiva studied parameters essential for the investigation and evaluation of mechanical and thermal properties, and derived a rock mechanics site descriptive model for safety evaluation and construction of the HLW disposal facilities. The rock mechanics SDM includes the results obtained from investigation and evaluation of the strength and deformability of intact rocks, fractures, and fractured rock masses, as well as the geometry of large-scaled deformation zones, the small-scaled fracture network system, thermal properties of rocks, and the in situ stress distribution of the disposal site. In addition, the site descriptive model should provide the sensitivity analysis results for the input parameters, and present the results obtained from evaluation of uncertainty.

Experimental Study on Load Transfer Characteristic by Adjacent Slope Excavation in a Jointed Rock Mass (절리암반에서 근접 사면굴착에 의한 하중전이특성에 대한 실험적 연구)

  • Lee, Jin-Wook;Lee, Sang-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.321-328
    • /
    • 2009
  • A optimal reinforcement in the joint rock slope excavation adjacent to an existing tunnel would be influenced by excavation distance from the tunnel, slope angel, and joint conditions but has been empirically determined so far. In this study, large scale model tests were conducted to find out the relationship between load translation on the excavation surface and bebavior of the tunnel according to excavation steps of the jointed rock slope. Consequently, two main parameters, joint dip and sloped angle were investigated in those model tests. From the test results, it was found that tunnel deformation was the largest one when the excavation of joints located closer to the tunnel crown or invert. Stability of the slope and the tunnel were varied in a certain excavation stage related to the angle of slope. In the future, based on results of this study the reinforcement method for the tunnel and slope safety in a jointed rock mass will be demonstrated.