• Title/Summary/Keyword: 절리선

Search Result 55, Processing Time 0.023 seconds

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이기구)

  • ;Cho Sung-Min;Jung Sung-Jun;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.187-196
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of pile should be known accurately. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanism of drilled shaft socketed into weathered rock was investigated. For the investigation, five cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the Held test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The f-w (side shear resistance-displacement) curve of the pile in moderately weathered rock reached to yielding point at a for millimeter displacements, and after yielding point, the rate of resistance increment dramatically decreased. However, the f-w curve in the highly/completely weathered rock did not show the obvious yielding point, and the resistance gradually increased showing the hyperbolic pattern until relatively high displacement (>15 mm). The q-w (end bearing resistance-displacement) curves showed linear response at least until the base displacement of approximately 10 mm, regardless of rock mass conditions.

Weighted Analysis Method for Estimating the Orientation of Limestone Caves in Korea (가중치를 이용한 국내 석회동굴 발달 방향성 해석법 개발에 관한 연구)

  • Lee, Sang-Kyun;Park, Hyeong-Dong
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.39-52
    • /
    • 2014
  • Limestone caves that consist of main passages and branches are formed by a variety of processes, and have the characteristic of developing with a preferred orientation controlled by discontinuities such as bedding, joints, and faults around the cave. However, it is difficult to analyze a representative orientation from various orientations. To interpret the overall development orientation of limestone caves, this study proposes new development orientation analysis methods, termed the Average Span Ratio Method (ASRM) and the Individual Development Ratio Method (IDRM), using the weighting of persistence. Nine limestone caves in Korea were randomly selected for testing the new methods. The methods show a stronger development orientation for limestone caves than that obtained by traditional methods, which consider only the distribution of development orientations. Based on an analysis of the relationship between the average span and the dip angle of bedding, it is confirmed that shallowly dipping bedding is a major contributor to the expansion of span in limestone caves. In addition, using scan-line survey data acquired in the field, we perform an RMR analysis of stability of the ground around limestone caves.

Formative Ages and Processes by Types of Natural Abandoned Channels in Korea (우리나라 자연 구하도의 유형별 형성시기와 형성과정)

  • LEE, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.1-15
    • /
    • 2012
  • The formative ages and processes of five natural abandoned channels in three types in Korea are studied. The former meandering channel in Seongsandong, Uljin-gun was abandoned due to the neck-cutoff of incised meander, Wangpi River in approximately 2.5~2.6ka and the abandoned channel in Bulyeong Temple, Uljin-gun was formed by the neck-cutoff of Wangpi River in approximately 90ka. Deduced from these results, it is judged to favorable for formation of abandoned channels by incised meander cutoff in interglacial or interstadial stages that had a better condition for meander cutoff because of active lateral erosion. Due to the corrosion of limestone joints in the underground of ridges between Hwangji River and Cheolam River, the channel in Gumumso, Taebaek-si was abandoned by the stream piracy connecting and combining the rivers into a limestone cave in approximately 40ka and higher lower reaches of Dong River than Banbyeon River in Seonbawi, Yeongyang-gun was turned to the abandoned channel throughout the stream piracy between the rivers in approximately 1.4ka. During Last Glacial Maximum in Jangcheon-ri, Chungju-si, Namhan River was divided into the eastern and western tributaries due to the alluvial island in approximately 10ka and then the western tributary was abandoned recently.

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

Rock Slope Stability Investigations Conducted on the Road Cut in Samrangjin-Miryang Area (삼량진-밀양 지역에 위치한 도로 절취사면에 대한 사면안정 연구)

  • Um Jeong-Gi;Kang Taeseung;Hwang Jin Yeon
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.305-317
    • /
    • 2005
  • This study addresses the preliminary results of rock slope stability analyses including hazard assessments for slope failure conducted on the selected sections of rural road cut slope which are about 4 km long. The study area is located in the Mt. Chuntae northeast of Busan and mainly composed of Cretaceous rhyolitic ash-flow tuff', fallout tuff, rhyolitc and andesite. The volcanic rock mass in the area has a number of discontinuities that produce a potentially unstable slope, as the present cut slope is more than 70 degrees in most of the slope sections. Discontinuity geometry data were collected at selected 8 scanline sections and analyzed to estimate important discontinuity geometry parameters to perform rock slope kinematic and block theory analyses. Kinematic analysis for plane sliding has resulted in maximum safe slope angles greater than $65^{\circ}$ for most of the discontinuities. For most of the wedges, maximum safe cut slope angles greater than $45^{\circ}$ were obtained. Maximum safe slope angles greater than 80" were obtained fur most of the discontinuities in the toppling case. The block theory analysis resulted in the identification of potential key blocks (type II) in the SL4, SL5, SL6 and SL8 sections. The chance of sliding taking place through a type ll block under a combined gravitational and external loading is quite high in the investigated area. The results support in-field observations of a potentially unstable slope that could become hazardous under external forces. The results obtained through limit equilibrium slope stability analyses show how a stable slope can become an unstable slope as the water pressure acting on joints increases and how a stable slope under Barton's shear strength criterion can fail as the worst case scenario of using Mohr-Coulomb criterion.