• Title/Summary/Keyword: 절리면 전단강도

Search Result 66, Processing Time 0.021 seconds

Estimation of Elastic Modulus of Jointed Rock Mass under Tunnel Excavation Loading (터널 굴착하중 조건에서의 절리암반의 탄성계수 예측)

  • Son, Moorak;Lee, Won-Ki;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.17-26
    • /
    • 2014
  • Tunneling-induced displacement in a jointed rock mass is an important factor to control tunnel stability and to secure a demanded space and construction quality. The magnitude of the inducible displacements is significantly affected by an elastic modulus and therefore, in a rock mass where a joint controls tunnel behavior, it is very important to estimate an elastic modulus of jointed rock mass reliably. Elastic modulus of jointed rock mass is affected by many factors such as rock type, joint condition, and loading condition. Nevertheless, most existing studies were focused on rough empirical relationships based on compressive loading conditions, which are different from tunnel excavation loading conditions, without a systematic approach of rock, joint, and loading conditions together. Therefore, this study considered rock and joint conditions systematically to estimate an elastic modulus of jointed rock mass under tunnel excavation loading. The controlled factors considered in this study are rock types and joint conditions (joint shear strength, joint inclination angle, number of joint sets, and joint spacing). Numerical parametric studies have been carried out with a consideration of different rock and joint conditions; the results have been compared with existing empirical relationships; and charts of elastic modulus change of different rock and joint conditions have been provided. The results are expected to have a great practical use for estimating the convergence induced by tunnel excavation in jointed rockmass.

Rock Mass Stability of the Buddha Statue on a Rock Cliff using Fracture Characteristics and Geological Face-Mapping (마애불 암반의 단열특성과 지질맵핑을 이용한 안정성 해석)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.539-544
    • /
    • 2023
  • The subject of this study is the Maae Buddha statue in granodiorite of the Mesozoic Cretaceous period, which is concerned about stability as a standing stone cultural property located in ◯◯-dong, Gyeongsangbuk-do. For stability analysis, three-dimensional face mapping, geological properties of joints, three-dimensional scanning, ultrasonic velocity, polarization microscopy, electron microscopy analysis and XRD analysis were performed. In addition, the safety factor of the Maaebul was calculated by analyzing the damage status investigation, stereographic projection analysis, rock classification, and limit equilibrium analysis. The types and scales of damage and possible collapse by section depend on the degree of weathering of the rock and the orientation and characteristics of the joints, but wedge-failure and toppling-failure are expected to be small-scale. The safety factor of Maaebul in dry and wet conditions is less than 1.2, so stability is concerned. The types of damage were mainly observed, such as exfoliation, cracking, granular decomposition, and vegetation growth. The Maaebul rock is granodiorite, and the surface discoloration materials are K, Fe, and Mg. The 4 sets of joints are developed, J1 is tensile joint and the others are shear joint. The uniaxial compressive strength estimated by ultrasonic exploration is 514kgf/cm2, which corresponds to most soft rocks and some weathered rocks. Rock classification(RMR) is estimated to be grade 5, very poor rock mass. These technique along with the existing methods of safety diagnosis of cultural properties are expected to be a reasonable tool for objective interpretation and stability review of stone cultural properties.

Effect of Rock Discontinuities on Dynamic Shear Stress Wave (암반 불연속면이 동적 전단응력파에 미치는 영향)

  • Son, Moorak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.25-32
    • /
    • 2018
  • This paper investigates the effect of rock discontinuities on a shear stress wave that is induced by earthquake or blasting and provides the result of numerical parametric studies. The numerical tests of different conditions of rock and discontinuity have been carried out after confirming that the numerical approach is valid throughout a verification analysis from which the test results were compared with a theoretical solution. In-situ stress condition was considered as a rock condition and internal friction angle and cohesive value, which are the shear strength parameters, were considered as discontinuities condition. The joint inclination angle was also taken into account as a parameter. With the various conditions of different parameters, the test results showed that a shear stress wave propagating through a mass is highly influenced by the shear strength of discontinuities and the condition of joint inclination angle as well as in-situ stress. The study results indicate that when earthquake or blasting-induced dynamic loading propagates through a jointed rock mass or a stratified soil ground the effect of in-situ stress and discontinuities including a stratum boundary should be taken into account when evaluating the dynamic effect on nearby facilities and structures.

Comparison Analysis of Factor of Safety on Rock Slope in Boeun Region Using Distinct Element Method and Limit Equilibrium Method (개별요소법과 한계평형법을 이용한 보은지역 암반사면 안전율 비교해석)

  • 이지수;유광호;박혁진;민경덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.33-41
    • /
    • 2003
  • The large planar failure has occurred in a rock cut slope of highway construction site in Boeun. This area is considered to be unstable since the discontinuity, whose orientation is similar to the orientation of the failure plane, is observed in many areas. Therefore, several analysis techniques such as SMR, stereographic analysis, limit equilibrium, numerical analysis, which are commonly used in rock slope stability analysis, are adopted in this area. In order to analyze the stress redistribution and nonlinear displacement caused by cut, which are not able to be obtained in limit equilibrium method, DEM and shear strength reduction technique were used in this study. Then the factors of safety evaluated by shear strength reduction technique and limit equilibrium were compared. In addition, the factor of safety under fully saturated slope condition was calculated and subsequently, the effect of the reinforcement was evaluated.

Shear Load-Transfer Function of Rock-Socketed Drilled Shafts Considering Borehole Roughness (굴착면 거칠기를 고려한 암반 근입 현장타설말뚝의 주면 하중전이함수 제안)

  • Seol, Hoon-Il;Woo, Sang-Yoon;Han, Keun-Taek;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.23-35
    • /
    • 2006
  • Shear load transfer characteristics of rock-socketed drilled shafts were analyzed. The constant normal stiffness (CNS) direct shear tests were performed to identify the major influencing factors of shaft resistance, i.e., unconfined compressive strength, borehole roughness, normal stiffness, initial confining stress, and material properties. Based on the CNS tests, shear load transfer function of drilled shafts in rocks is proposed using borehole roughness and the geological strength index (GSI), which indicates discontinuity and surface condition of rock mass in Hoek-Brown criterion (1997). The proposed load-transfer function was verified by the load test results of seven rock-socketed drilled test shafts subjected to axial loads. Through comparisons of the results of load tests, it is found that the load-transfer function by the present study is in good agreement with the general trend observed by in situ measurements, and thus represents a significant improvement in the prediction of load transfer of drilled shafts.

Experimental Study on Reduced Amount of Rebound in Wet Process Shotcrete Works by Upon Accelerator Contents (급결제 함유량에 따른 습식 Shotcrete 리바운드 감소량에 대한 실험적 연구)

  • Jeon, Jun Tai;Park, Hong Tae;Lee, Yang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.615-622
    • /
    • 2012
  • The aim of shotcrete is to increase the bearing capacity and to protect the excavated surface from erosion by preventing falling of rock mass. Shotcreting method is divided into two types as dry process and wet process. Since 1997, wet process method has been used more frequently than dry process method in field works. The failure to bond, so called rebound, occurs in many case during shotcrete works. The excess amount of rebound has a significant effect on the total construction cost. For example, material and craft-man cost increases, the shooting time delays due to deceleration of work execution stage, work efficiency of craft-man decreases and additional cost to remove the muck generates. In this study, therefore, the experimental analysis of rebound amount and strength was conducted by analyzing the actual construction data for wet process type of shotcreting method upon accelerator contents. Also, the effective and rational method was suggested, which can be actually implemented in the Korea construction sites.