• Title/Summary/Keyword: 절리길이

Search Result 60, Processing Time 0.029 seconds

Study on the Estimation of Joint Length Distribution Using Window Sampling (조사창 조사를 이용한 절리 길이분포의 추정에 관한 연구)

  • 송재준;이정인
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.2
    • /
    • pp.21-30
    • /
    • 2001
  • 통계적 절리모델링에서 가장 불확실성이 큰 부분이 절리의 길이분포를 추정하는 것이다. 절리선 길이 분포의 추정에서 이제까지는 주로 조사선 조사(scanline survey)를 통한 절리선 반길이 분포를 이용하여 왔다. 이 연구에서는 포이송 디스크 절리모델에 대하여 보다 정밀도가 높은 절리선 길이 분포 추정방법을 찾기 위하여 조사창 조사를 이용하였다. 직사각형 및 원형 조사창에 대하여 양쪽 끝이 조사창 내부에 존재하는 절리선인 양끝내포선의 길이 분포와 한쪽 끝만이 존재하는 한끝내포선의 길이 분포를 이용, 절리선 분포를 추정하는 4개의 관계식을 각각 유도하고 컴퓨터 모의실험을 통하여 유도식의 타당성을 검증한 후 각 유도식을 이용한 절리선 분포의 추정오차를 비교하였다. 또한 절리선 분포로부터 절리직경분포를 계산하는 수치적 해를 유도하고 컴퓨터 모의시험을 통해 수치적 해에 대한 타당성을 검증하였다. 이 연구에서 제시한 조사창 조사를 이용한 절리 길이의 추정방법은 앞으로 절리모델링 분야에서 적용성이 높을 것으로 판단된다.

  • PDF

Corrections for Sampling biases of borehole data to characterize deep fractured rock mass (심층 절리암반의 구조특성 규명을 위한 시추공 자료편향 보정법)

  • 엄정기
    • Proceedings of the KSEG Conference
    • /
    • 2003.04a
    • /
    • pp.27-35
    • /
    • 2003
  • 시추공에서 측정된 절리자료의 샘플링 편향오류를 보정하는 절차를 기술하였다. 시추공에서 절리의 방향이 관측될 수 있는 확률은 시추공에 대한 절리의 상대적인 방향 이외에도 절리의 크기, 절리의 모양 및 시추공의 반경 과 길이와 같은 요인에 의하여 결정될 수 있으며, 이러한 요인들에 의하여 나타날 수 있는 절리자료의 방향편향을 보정할 수 있는 방법론을 제시하였다 유한 길이의 시추공으로부터 산정된 절리의 간격분포는 샘플링 영역인 시추공 길이의 영향에 의한 산정치의 오류를 내포하고 있으며, 이에 대한 보정법을 고찰하였다.

  • PDF

Measurement of Joint Roughness in Large-Scale Rock Fracture Using LIDAR (LIDAR를 이용한 대규모 암반 절리면의 거칠기 측정)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.52-63
    • /
    • 2009
  • This is a study on large-scale rock joint roughness measurements using LIDAR (light detection and ranging) and the Split-FX point cloud processing software. The large-scale rock Joint Roughness Coefficient (JRC) is calculated using the maximum amplitude of joint asperities over the profile length on large-scale Joint surfaces of rock. As the profile length increases, JRC decreases due to scale-effects of rock specimens and is non-stationary. Also JRC shows anisotropy depending on the profile direction. The profile direction is measured relative to either dip or strike of the large-scale joint.

A Study of the Influence of Void Geometry on Fracture Closure and Permeability (간극의 기하학적 특성이 절리의 수직변형 및 투수성에 미치는 영향에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.304-311
    • /
    • 2002
  • This study reports the influence of vocid geometry on fracture closure and permeability from numerical experiments. As the aperture distributions of rock fractures are characterized by statistical methods, synthetic fractures have successfully been simulated in this way. Based on the generated fracture models, models for fracture closure and flow calculation have been developed. A fracture closure model has been developed by considering the asperity compression and half-space deformation, and flow calculations have been performed using a finite difference method adopting a local cubic law. The results of numerical experiments have shown that the increase in the aperture spatial correlation leads the fracture closure and the decrease in fracture permeability to increase. Also, it has been indicated that there is an implicit relation between fracture normal stiffness and permeability. The importance of this study is to enhance the understanding the hydro-mechanical behavior of fractured rock massed due to engineering projects.

Effects of Joint Density and Size Distribution on Hydrogeologic Characteristics of the 2-D DFN System (절리의 빈도 및 길이분포가 이차원 DFN 시스템의 수리지질학적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi;Lee, Dahye
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.61-71
    • /
    • 2017
  • The effects of joint density and size distribution on the hydrogeologic characteristics of jointed rock masses are addressed through numerical experiments based on the 2-D DFN (discrete fracture network) fluid flow analysis. Using two joint sets, a total of 51 2-D joint network system were generated with various joint density and size distribution. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$, and total of 612 $20m{\times}20m$ DFN blocks were prepared to calculate the directional block conductivity. Also, the theoretical block conductivity, principal conductivity tensor and average block conductivity for each generated joint network system were determined. The directional block conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the increase of joint density or size distribution. However, the anisotropy of block hydraulic conductivity increases with the increase of density discrepancy between the joint sets, and the chance for the equivalent continuum behavior were found to decrease. The smaller the intersection angle of the two joint sets, the more the equivalent continuum behavior were affected by the change of joint density and size distribution. Even though the intersection angle is small enough that it is difficult to have equivalent continuum behavior, the chance for anisotropic equivalent continuum behavior increases as joint density or size distribution increases.

A Study for the Estimation of Joint Diameter Distribution Using the Trace Length Distribution from Cylindrical Window Survey (원통형조사창에서의 절리선 길이분포를 이용한 암반 내 절리직경분포 추정에 관한 연구)

  • Jeon, Ki-Hwan;Song, Jae-Joon;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.386-393
    • /
    • 2011
  • This study suggests an algorithm for estimating joint diameter distribution in rock mass from the joint trace length distribution around a circular tunnel. For estimating the joint diameter distribution, the concept of Joint Center Volume (JCV) suggested by Song. (2005) was applied and the calculation method of JCV for the cylindrical window survey was developed by using the complete survey method. The estimated joint diameter distribution was verified against the original joint diameter distribution by Monte-Carlo simulation. It was observed that the estimated joint diameter distribution was converged to the original joint diameter distribution with less than 20% of error.

A Study on the Quantified Criteria in Determining the Geostructural Domain of Fractured Rock Mass (절리암반내 지구조구 설정을 위한 정량적 기준에 대한 연구)

  • Um Jeong-Gi;Cho Taechin;Kwon Soon Jin
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.26-37
    • /
    • 2006
  • This study addresses the applicability of box fractal dimension, $D_B$, as an index of statistical homogeneity of fractured rock mass. The box-count method's capability in quantifying the combined effect of fracture density and size distribution is examined systematically. Total of 129 two-dimensional fracture configurations were generated based on different combinations of fracture size distribution and fracture density. $D_B$was calculated for the generated fracture network systems using the box-counting method. It was found that was standard deviation of trace length and fracture orientation have no effect on calculated $D_B$. The estimated $D_B$ was found to increase with increasing total density and/or mean trace length. To explore the field applicability of this study, the statistical homogeneity of fractured rock mass was investigated at the rock slope and the underground facility using the box-counting method as well as conventional contingency table analysis. The results obtained in this study clearly show that the methodologies given in this paper have the capability of determining the statistical homogeneity of fractured rock mass.

A study of the Sampling Bias Correction on Joint Data from 1D Survey Line (1D 측선에 의한 절리 자료에 대한 편향 보정 기법에 관한 연구)

  • 엄정기
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.344-352
    • /
    • 2003
  • The procedures to correct sampling biases for discontinuity data obtained from 1D survey line(borehole or scanline) is addressed. The Probability of intersection between the survey line and a circular discontinuity is considered, and a correction far orientation bias is developed assuming discontinuities as equivalent circular disks. The correction incorporates the effect of the angle between the direction of survey line and each discontinuity plane belonging to the discontinuity cluster, size of each discontinuity and length of the survey line. A procedure is provided to estimate unbiased discontinuity spacing parameters using the discontinuity spacing data based on the measurements carried out on a finite length of the survey line.

Effect of Joint Geometry on Anisotropic Deformability of Jointed Rock Masses (절리의 기하학적 속성이 절리성 암반의 이방적 변형 특성에 미치는 영향)

  • Ryu, Seongjin;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.271-285
    • /
    • 2020
  • In this study, a numerical experiment related to the stress-strain analysis was performed on 3-D discrete fracture network(DFN) systems based on the distinct element method to evaluate the effect of joint geometry on deformability of jointed rock masses. Using one or two joint sets with deterministic orientation, a total of 12 3-D DFN blocks having 10m cube domain were generated with different joint density and size distribution. Directional deformation modulus of the DFN cube blocks were estimated along the axis directions of 3-D cartesian coordinate. In addition, deviatoric stress directions were chosen at every 30° of trend and plunge in 3-D for some DFN blocks to examine the variability of directional deformation modulus with respect to joint geometry. The directional deformation modulus of the DFN block were found to reduce with the increase of joint size distribution. The increase in joint density was less likely to have a significant effect on directional deformation modulus of the DFN block in case of the effect of rock bridges was relatively large because of short joint size distribution. It, however, was evaluated that the longer the joint size, the increase in the joint density had a more significant effect on the anisotropic deformation modulus of the DFN block. The variation of the anisotropic deformation modulus according to the variations in joint density and size distribution was highly dependent on the number of joint sets and their orientation in the DFN block. Finally, this study addressed a numerical procedure for stress-strain analysis of jointed rock masses considering joint geometry and discussed a methodology for practical application at the field scale.