• Title/Summary/Keyword: 절리경사

Search Result 99, Processing Time 0.025 seconds

A Study of the Application of Digital Photogrammetry to Railroad Rock Slope Investigation System (디지털 사진측량의 철도 암사면 조사시스템 적용에 관한 연구)

  • Ahn, Tae-Bong
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.548-556
    • /
    • 2009
  • In order to evaluate applicability of rock cut-slope investigation system, typical clinometer and photogrammetry investigation system were used for rock slopes; first for 7 discontinuities, and secondly, 10 discontinuities, and the results were compared. The first verification was performed depending on discontinuity joint shapes and slope angles, and the second verification was performed depending on shot time and shot locations. The results showed that differences of dip direction $1^{\circ}{\sim}4^{\circ}$, dip $0^{\circ}{\sim}4^{\circ}$. In the second verification test, the differences of dip direction was $0^{\circ}{\sim}6^{\circ}$, and dip $0^{\circ}{\sim}6^{\circ}$. The photogrammetry method for rock slope survey system is quite reliable when clinometer generally shows ${\pm}10^{\circ}$ errors due to surface roughness and investigator.

Identification of the Transmissive Fractures in the Vicinity of waterway Tunnel (도수로터널 주변 지역의 지하수 유동성 단열 규명)

  • 이병대;이인호;추창오;함세영;성익환;황세호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.33-44
    • /
    • 2002
  • A field technique for assessing the transmissive fractures in an aquifer was applied to a fractured rock formation in Youngchun area Korea. Geological mapping and detailed acoustic borehole teleview(BHTV) logging were performed to obtain information about the fractures. The study area consists predominantly of two types of fractures. The fracture sets of low angle partings such as bedding and sheeting plains have strike N70-80$^{\circ}$W, 25$^{\circ}$-30$^{\circ}$SW and N3S$^{\circ}$W, 12$^{\circ}$NE, respectively. In areas of high fractures, on the other hand, the major fracture sets show strike N80$^{\circ}$W and dip 70$^{\circ}$-85$^{\circ}$SW, N10$^{\circ}$E.85$^{\circ}$SE in sedimentry rocks, N40-50$^{\circ}$E.85$^{\circ}$SE/85$^{\circ}$NE, N70$^{\circ}$E.80$^{\circ}$SE, and N7$^{\circ}$-75$^{\circ}$W.80$^{\circ}$SW in granites and volcanic rocks. Injection tests have been performed to identify discrete production zones and quantify the vertical distribution of hydraulic conductivity. The calculated hydraulic conductivities range from 3.363E-10 to 2.731E-6, showing that the difference between maximum and minimum value is four order of magnitude. Dominant section in hydraulic conductivity is extensively fractured. Geophysical logging was carried out to clarify characterization of the distribution of fracture zones. Transmissive fractures were evaluated through the comparison of the results obtained by each method. The temperature logs appeared to be a good indicator that can distinguish a high transmissive fractures from a common fractures in hydraulic conductivity. In numerous cases, evidence of fluid movement was amplified in the temperature gradient log. The fracture sets of N70-80$^{\circ}$W.60-85$^{\circ}$NE/SW N75-80$^{\circ}$W.25-30$^{\circ}$SW, N50-64$^{\circ}$W.60-85$^{\circ}$NE, N35-45$^{\circ}$E.65-75$^{\circ}$SE, and N65-72$^{\circ}$E.80$^{\circ}$SE/60$^{\circ}$NW were idenfied as a distinct transmissive fractures through the results of each tests.

High Resolution Borehole Acoustic Scanner (Televiewer) (고분해능 텔레뷰어 검층기법의 기능)

  • ;Schepers,R
    • The Journal of Engineering Geology
    • /
    • v.5 no.3
    • /
    • pp.277-288
    • /
    • 1995
  • Fracture detection has always been very attractive to the log, because it is important in many of our prospecting activities, e.g. in understanding the underground rock formation and also the fluid flow as a high permeability path. This paper demonstrates the use of high resolution borehole acoustic scanner for the detection of fractures. The tool, known as Televiewer, is the first acoustic borehole imaging system to use a focussed beam. The acoustic beams generated by a single transducer are sent toward the borehole wall, scanning the wall in a tight helix as the tool moves along the borehole. The amplitudes and travel times of the reflected signals are then measured, which produces the corresponding images. The highly resolved amplitude image allows to recognize various size of fractures and in addition to derive the rock strength from the image. Meanwhile, the travel time image itself can be directly converted to a precise caliper image, providing detailed information of deviations of the borehole shape. It also allows correction of and explanations for amplitude variations. Field measurements were carried Out at the Cheongyang study sites in Korea to illustrate the efficiency of the televiewer log.

  • PDF

Analysis of Parameters to Influence on Rock Fragmentation in Bench Blasting (벤치발파에서 암석 파쇄도에 영향을 미치는 요인 분석)

  • 최용근;이정인;이정상;김장순
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • In bench blasting, rock fragmentation is one of the most important factors determining productivity. Rock fragmentation could be affected by various conditions and these were hewn that rock joint conditions and in-situ block sizes were the biggest effect on it. This research is focused on what or how to influence on rock fragmentation according to relation between blasting conditions and the in-situ rock conditions such as rock joint conditions and in-situ block size. Field measurements were carried out in 3 open pit limestone mines, where in-situ rock conditions and blasting conditions were fully investigated. The results show that the parameters interact with blasting conditions complicatedly and especially in-situ block size has bigger effects. Dip direction of major joint set also can affect on fragmentation. Mean fragment size become smallest when dip direction of major joint set is about $30^{\circ}$ with the bench direction. The reason is considered to be come from difference of propagation paths of elastic wave.

The Geometric Characteristics of Landslides and Joint Characteristics in Gangneung Area (강릉지역 산사태의 기하학적 특성과 절리특성에 관한 연구)

  • Cho, Yong-Chan;Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.437-453
    • /
    • 2006
  • More than 3,000 landslides were occurred by torrential rains in Gangneung area due to the typhoon Rusa in 2002. In order to analyze the landslide origin and its geometric characteristics, 1,365 landslide data were collected from the field survey of Sacheon, Jumunjin, and Yeongok areas in which the intensive landslides took place. The average landslide size in the study area was composed of 10m width, 30m length, and $21^{\circ}{\sim}35^{\circ}$ slope angle, and the plane view of landslides A-type (i.e. wide shape of lower part) that contains approximately 50.5% of the landslides commonly occurred. In particular the area of Sacheon heavily damaged by mountain fires had more occurrence of landslides than other areas. The landslides of uniform tendency of slope direction were examined resulted from the contribution of topographic characteristics due to the weathering and wind direction during heavy rainfalls. In order to analyze the direction of joint, 249 orientation data were collected from the study area. The window method was employed to determine the characteristics of joint density in 51 locations of the study area. The results showed that many landslides occurred in the areas of joint density with the range of $0.05{\sim}0.1$.

Development of a Rock Slope Analysis Software Considering Ground Water Level (지하수의 영향을 고려한 사면 해석 소프트웨어 개발)

  • Yang Hyung-Sik;Ha Tae-Wook;Kim Won-Beom;Choi Mi-Jin;Lee Jine-Haeng
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.213-222
    • /
    • 2005
  • In this study, an artificial neural network was used to predict stability of weak rock slopes with various discontinuities and underground water conditions. Input data were provided by UDEC analyses on 108 cases of representative conditions of different slope heights, angles, discontinuity angles and water levels. The verification shows high correlation $(r^2-=0.97)$ between analyses and predictions. The program was able to predict safety factors with the same accuracy from unlearned data sets.

Investigation of Rock Slope Failures based on Physical Model Study (모형실험을 통한 암반사면의 파괴거동에 대한 연구)

  • Cho, Tae-Chin;Suk, Jae-Uk;Lee, Sung-Am;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.447-457
    • /
    • 2008
  • Laboratory tests for single plane sliding were conducted using the model rock slope to investigate the cut slope deformability and failure mechanism due to combined effect of engineering characteristics such as angle of sliding plane, water force, joint roughness and infillings. Also the possibility of prediction of slope failure through displacement monitoring was explored. The joint roughness was prepared in forms of saw-tooth type having different roughness specifications. The infillings was maintained between upper and lower roughness plane from zero to 1.2 times of the amplitude of the surface projections. Water force was expressed as the percent filling of tension crack from dry (0%) to full (100%), and constantly increased from 0% at the rate of 0.5%/min and 1%/min upto failure. Total of 50 tests were performed at sliding angles of $30^{\circ}$ and $35^{\circ}$ based on different combinations of joint roughness, infilling thickness and water force increment conditions. For smooth sliding plane, it was found that the linear type of deformability exhibited irrespective of the infilling thickness and water force conditions. For sliding planes having roughness, stepping or exponential types of deformability were predominant under condition that the infilling thickness is lower or higher than asperity height, respectively. These arise from the fact that, once the infilling thickness exceeds asperities, strength and deformability of the sliding plane is controlled by the engineering characteristics of the infilling materials. The results obtained in this study clearly show that the water force at failure was found to increase with increasing joint roughness, and to decrease with increasing filling thickness. It seems possible to estimate failure time using the inverse velocity method for sliding plane having exponential type of deformability. However, it is necessary to estimate failure time by trial and error basis to predict failure of the slope accurately.

Comparative Study of Square-Inventory Method with Scanline Survey in Slope Stability Analysis (사면 안정 분석을 위한 정면적법과 선조사법의 비교연구)

  • Cheong, Sang-Won;Choi, Byoung-Ryol
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.119-129
    • /
    • 2009
  • In relation to slope stability analysis, geologic characteristics and engineering properties of the discontinuities in three slopes selected are compared and analyzed by both square-inventory method and scanline survey. The aim of the study is in evaluating which method is applied better in slope stability analysis by comparing results of the two methods with those of direct observation on outcrop of slope failures generated. In each slope, results of comparative analysis among geologic and engineering properties are analyzed similarly one another. However, results of orientation analysis in slope 2 are different each other, which indicates orientation of joints in slope 2 depends on persistency and frequency of each joint and also indicates appearance of new joint set with different orientation. Probability density distribution and spacing in slope 3 are high in comparison to those in slope 2 and 3. The reasons are that distribution of psammitic rocks and development of minor folds in slope 3 unlike slope 2 and 3 are closely associated with development of joints. The research data indicate that the square-inventory method predicts more precise failure aspects and is more effective way than scanline survey in analyzing slope stability of the study area.

A study of the gradient establishment for Rock slope considering joints characteristics. (절리 특성을 고려한 암반사면의 절취경사 기준 설정에 관한 연구)

  • 이수곤;김부성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.501-508
    • /
    • 2002
  • The percentage of a mountainous district in our country is comparatively high but the concern for rock mass has been disregarded for a long time. Especially for rock slope, the most important factors are geometric characteristics and their shear strength parameter. In this paper, parametric studies are performed using the distinct element computer program UDEC-BB for rock slopes. Parameters adopted in this paper are joint angle, spacing, persistence, aperture and shear strength parameters (JRC, JCS, basic friction angle). To estimate slope stability, shear strength reduction method is used. The most important factors affecting rock slope stability are joint angle and spacing. The relationship between average displacement calculated by UDEC-BB and safe factor by shear strength reduction method is researched.

  • PDF

A Study on the Ultimate Point Resistance of Rock Socketed Drilled Shafts Using FLAC3D and UDEC (유한차분해석과 개별요소해석을 이용한 암반에 근입된 현장타설말뚝의 선단지지력 연구)

  • Lee, Jae-Hwan;Cho, Hoo-Yeon;You, Kwang-Ho;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.29-39
    • /
    • 2012
  • The maximum unit point resistance ($q_{max}$) of rock socketed drilled shafts subjected to axial loads was investigated by a numerical analysis. A 3D Finite Difference Method (FDM) analysis and a Distinct Element Method (DEM) analysis were performed with varying rock elastic modulus (E), discontinuity spacing ($S_j$), discontinuity dip angle ($i_j$), and pile diameter (D). Based on the results of obtained, it was found that the ultimate point resistance ($q_{max}$) increased as rock elastic modulus (E) and rock discontinuity spacing ($S_j$) increased. But, it was found that $q_{max}$ decreased as pile diameter (D) increased. As for the influence of the dip angle of rock discontinuity ($i_j$), it was shown that $q_{max}$ decreased up to 50% of maximum value within the range of $0^{\circ}$ < $i_j$ < $60^{\circ}$ due to the shear failure at rock discontinuities. Furthermore, it was found that if $20^{\circ}{\leq}i_j{\leq}40^{\circ}$, influence of $i_j$ should be taken into account because $q_{max}$ tended to approach a minimum value as $i_j$ approached a value near the friction angle of the discontinuity (${\phi}_j$).