The Journal of the Korea institute of electronic communication sciences
/
v.14
no.6
/
pp.1235-1240
/
2019
It is well known that the ground water level changes rapidly before and after the earthquake, and the variation of ground water level prediction is used to predict the earthquake. In this paper, we predict the ground water level in Miryang City using ANFIS algorithm for earthquake prediction. For this purpose, this paper used precipitation and temperature acquired from National Weather Service and data of underground water level from Rural Groundwater Observation Network of Korea Rural Community Corporation which is installed in Miryang city, Gyeongsangnam-do. We measure the prediction accuracy using RMSE and MAPE calculation methods. As a result of the prediction, the periodic pattern was predicted by natural factors, but the change value of ground water level was changed by other variables such as artificial factors that was not detected. To solve this problem, it is necessary to digitize the ground water level by numerically quantifying artificial variables, and to measure the precipitation and pressure according to the exact location of the observation ball measuring the ground water level.
The number of patent application filing for a specific technology has a good relation with the technology's life cycle and future industry development on that area. So industry and governments are highly interested in forecasting the number of patent application filing in order to take appropriate preparations in advance. In this paper, a new method based on the bidirectional long short-term memory(LSTM), a kind of recurrent neural network(RNN), is proposed to improve the forecasting accuracy compared to related methods. Compared with the Bass model which is one of conventional diffusion modeling methods, the proposed method shows the 16% higher performance with the Korean patent filing data on the five selected technology areas.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.12
no.4
/
pp.1-10
/
2013
This study was conducted to investigate that bus information was used as an information of travel speed. To determine the travel speed on the road, bus information and the information collected from the point detector and the interval detection installed were compared. If bus information has the function of traffic information detector, can provide the travel speed information to road users. To this end, the model of recognizing the traffic patterns is necessary. This study used simple moving-average method, simple exponential smoothing method, Double moving average method, Double exponential smoothing method, ARIMA(Autoregressive integrated moving average model) as the existing methods rather than new approach methods. This study suggested the possibility to replace bus information system into other information collection system.
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.3D
/
pp.461-467
/
2006
To detect individual vehicular speed, double loop detection technique has been widely used. This paper investigates four methodologies to measure individual speed using only a single loop sensor in a traveling lane. Two methods developed earlier include estimating the speed by means of (Case 1) the slop of inductance wave form generated by the sensor and (Case 2) the average vehicle lengths. Two other methods are newly developed through this study, which are estimations by measuring (Case 3) the mean of wheelbases using the sensor installed traversal to the traveling lane and (Case 4) the mean of wheel tracks by the sensor installed diagonally to the traveling lane. These four methodologies were field-tested and their accuracy of speed output was compared statistically. This study used Equality Coefficient and Mean Absolute Percentage Error for the assessment. It was found that the method (Case 1) was best accurate, followed by method (Case 4), (Case 2), and (Case 3).
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.6
/
pp.453-459
/
2021
The system marginal price of electricity is the amount paid to all the generating units, which is an important decision-making factor for the construction and maintenance of an electrical power unit. In this paper, we suggest a long-term forecasting model for calculating the system marginal price based on prices of natural gas and oil. As most variables used in the analysis are nonstationary time series, the long run relationship among the variables should be examined by cointegration tests. The forecasting model is similar to an error correction model which consists of a long run cointegrating equation and another equation for short run dynamics. To mitigate the robustness issue arising from the relatively small data sample, this study employs various testing and estimating methods. Compared to previous studies, this paper considers multiple fuel prices in the forecasting model of system marginal price, and provides greater emphasis on the robustness of analysis. As none of the cointegrating relations associated with system marginal price, natural gas price and oil price are excluded, three error correction models are estimated. Considering the root mean squared error and mean absolute error, the model based on the cointegrating relation between system marginal price and natural gas price performs best in the out-of-sample forecast.
Chung, Won Hee;Park, Giljoo;Gu, Yeong Hyeon;Kim, Sunghyun;Yoo, Seong Joon;Jo, Young-do
The Journal of Society for e-Business Studies
/
v.23
no.2
/
pp.33-47
/
2018
City gas pipelines are buried underground. Because of this, pipeline is hard to manage, and can be easily damaged. This research proposes a real time prediction system that helps experts can make decision about pressure anomalies. The gas pipline pressure data of Jungbu City Gas Company, which is one of the domestic city gas suppliers, time variables and environment variables are analysed. In this research, regression models that predicts pipeline pressure in minutes are proposed. Random forest, support vector regression (SVR), long-short term memory (LSTM) algorithms are used to build pressure prediction models. A comparison of pressure prediction models' preformances shows that the LSTM model was the best. LSTM model for Asan-si have root mean square error (RMSE) 0.011, mean absolute percentage error (MAPE) 0.494. LSTM model for Cheonan-si have RMSE 0.015, MAPE 0.668.
Travel-time is considered the most typical and preferred traffic information for intelligent transportation systems(ITS). This paper proposes a real-time travel-time prediction method for a national highway. In this paper, the K-nearest neighbor(KNN) method is used for travel time prediction. The KNN method (a nonparametric method) is appropriate for a real-time traffic management system because the method needs no additional assumptions or parameter calibration. The performances of various models are compared based on mean absolute percentage error(MAPE) and coefficient of variation(CV). In real application, the analysis of real traffic data collected from Korean national highways indicates that the proposed model outperforms other prediction models such as the historical average model and the Kalman filter model. It is expected to improve travel-time reliability by flexibly using travel-time from the proposed model with travel-time from the interval detectors.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.10
/
pp.6860-6868
/
2015
In this study, we consider a problem of forecasting daily city gas demand of Korea. Forecasting daily gas demand is a daily routine for gas provider, and gas demand needs to be forecasted accurately in order to guarantee secure gas supply. In this study, we analyze the time series of city gas demand in several ways. Data analysis shows that primary factors affecting the city gas demand include the demand of previous day, temperature, day of week, and so on. Incorporating these factors, we developed a multiple linear regression model. Also, we devised a sampling procedure that selectively collects the past data considering the characteristics of the city gas demand. Test results on real data exhibit that the MAPE (Mean Absolute Percentage Error) obtained by the proposed method is about 2.22%, which amounts to 7% of the relative improvement ratio when compared with the existing method in the literature.
The accuracy of a Video Image Detector (VID) is gradually reduced due to various environmental and mechanical factors. However, there has been no systematic research about the decrease of VID accuracy. To maintain a proper level of VID accuracy for advanced traffic management, a regular VID calibration process needs to be introduced. However, the calibration cannot be performed frequently because of the cost. In this study, the researchers collected field data for accuracy estimation and inferred an accuracy decreasing function by using regression and considering the heteroscedasticity problem. Using the invented data collection equipment which was used for checking adaptability, some data in the field were collected and analyzed. Although the data were limited, the results are promising. More data need to be investigated in the future and this study will help to maintain the data quality for broad utilization of the data in ITS centers.
KSCE Journal of Civil and Environmental Engineering Research
/
v.35
no.3
/
pp.625-637
/
2015
This study aims to calculate optimal travel speeds based on analysis of the AVI data collected in the uninterrupted traffic flow, and the results are as follows. Firstly, we looked into the distribution of the sectional travel times of each probe vehicle and compared the difference in the sectional travel speeds of each probe vehicle. As a result, it is shown that outliers should be removed for the distribution of the sectional travel times. Secondly, there were differences among type 1(passenger automobiles) & type 2(automobiles for passengers and freight) and type 4(special automobiles) in the non-congestion section. thus it was revealed that there is a necessity to remove type 4(special automobiles) when calculating the sectional travel speeds. Thirdly, Based on the results of these, the optimal outlier removal procedures were applied to this study. As a result, it showed that the MAPE was between 0.3% and 2.0% and RMSE was between 0.3 and 2.3 which are very similar figures to the actual average traffic speed. Also, the minimum sample size was satisfied at the confidence level of 95%. The result of study is expected to serve as a useful basis for the local government to build the AVI. In the future, it will be necessary to study to integrate AVI data and other data for more accurate traffic information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.