DOI QR코드

DOI QR Code

Groundwater Level Prediction Using ANFIS Algorithm

ANFIS 알고리즘을 이용한 지하수수위 예측

  • 박귀만 (전남대학교 전기 및 반도체공학과) ;
  • 배영철 (전남대학교 전기.전자통신.컴퓨터공학부)
  • Received : 2019.10.29
  • Accepted : 2019.12.15
  • Published : 2019.12.31

Abstract

It is well known that the ground water level changes rapidly before and after the earthquake, and the variation of ground water level prediction is used to predict the earthquake. In this paper, we predict the ground water level in Miryang City using ANFIS algorithm for earthquake prediction. For this purpose, this paper used precipitation and temperature acquired from National Weather Service and data of underground water level from Rural Groundwater Observation Network of Korea Rural Community Corporation which is installed in Miryang city, Gyeongsangnam-do. We measure the prediction accuracy using RMSE and MAPE calculation methods. As a result of the prediction, the periodic pattern was predicted by natural factors, but the change value of ground water level was changed by other variables such as artificial factors that was not detected. To solve this problem, it is necessary to digitize the ground water level by numerically quantifying artificial variables, and to measure the precipitation and pressure according to the exact location of the observation ball measuring the ground water level.

지진이 발생하기 전·후에 지하수 수위는 급격하게 변화되는 것으로 알려져 있으며 지진 예측을 위해 지하수 수위 변화를 이용한다. 본 연구는 지진을 예측에 사용하기 위해 ANFIS 알고리즘을 이용한 밀양시의 지하수수위를 예측한다. 이를 위해 본 논문에서는 경남 밀양시의 기상청의 강수량, 기온 데이터와 한국농어촌공사 농촌지하수관측망의 지하수수위 데이터가 사용되었다. 예측 측정을 위해 RMSE, MAPE 오차 계산 방법을 사용하였다. 예측 결과 수위가 자연적인 요인에 의해 주기적인 패턴은 예측이 되었으나 인위적인 요인 등 다른 변수에 의해 변동되는 지하수수위 변화값은 감지하지 못하였다. 이를 해결하기 위해서는 지하수수위를 인위적인 변수 등을 수치화하여 데이터화 하는 것과 지하수수위를 측정한 관측공의 정확한 위치에 따른 강수량과 기압 등이 필요하다.

Keywords

References

  1. Y. Kim and K. Jin, "Estimated earthquake magnitudes based on fault displacement data of quaternary faults in SE Korea," J. of the Geology of Korea, vol. 3, 2007, pp. 57-78.
  2. Y. Kim, C. Lee, and S. Lee, "A study of the prediction of earthquake occurrence by detecting radon radioactivity," J. of the Environmental Sciences, vol. 12, no. 6, 2013, pp. 677-688.
  3. G. D. L. Touche, "Earthquakes and Groundwater and Surface Water Management at Mines Sites," In Proc. IMWA 2016, Freiberg, Germany, 2016, pp. 102-017.
  4. H. Lee, M. Kim, and T. Woo, "Earthquake Observation through Groundwater Monitoring: A case of M4.9 Odaesan Earthquake," J. of soil and groundwater environment, vol. 16, no. 3, 2011, pp. 38-47. https://doi.org/10.7857/JSGE.2011.16.3.038
  5. F. L. Huang, M. Ma, Y. Tian, L. Yan, W. Li, and W. X., "Studies on earthquake precursors in China: A review for recent 50 years," J. of the Geodesy and geodynamics, vol. 8, no. 1, 2017, pp. 1-12. https://doi.org/10.1016/j.geog.2016.12.002
  6. H. Yoon, Y. Kim, K. Ha, and G. Kim "Application of groundwater-level prediction models using data-based learning algorithms to National Groundwater Monitoring Network data," J. of the Engineering geology, vol. 23, no. 2, 2013, pp. 137-147. https://doi.org/10.9720/kseg.2013.2.137
  7. R. D. Cicerone, J. E. Ebel, and J. Britton, "A systematic compilation of earthquake precursors," Tectonophysics, vol. 476, no. 3-4, 2009, pp. 371-396. https://doi.org/10.1016/j.tecto.2009.06.008
  8. G. Bak and Y. Bae, "Performance comparison of machine learning in the various kind of prediction," J. of the Korea institute of electronic communication science, vol. 14, no. 1, 2019, pp. 169-178. https://doi.org/10.13067/JKIECS.2019.14.1.169
  9. Y. Han, "A study on motion prediction and subband coding of moving pictures using GRNN," J. of the Korea institute of electronic communication science, vol. 5, no. 3, 2010, pp. 256-261.
  10. S. Bang, "Implementation of Image based Fire Detection System Using Convolution Neural Network," J. of the Korea institute of electronic communication science, vol. 12, no. 2, 2017, pp. 331-336. https://doi.org/10.13067/JKIECS.2017.12.2.331
  11. J. Jang, Y. Lee, K. Lee, M. Kim, S. Oh, and S. Park, "The Improvement of predictability for very short range precipitation by blending of VDAPS and MAPLE using micro-genetic algorithm," J. of the Korea institute of intelligent systems, vol. 29, no. 4, 2019, pp. 258-267. https://doi.org/10.5391/JKIIS.2019.29.4.258
  12. R. Allan Freeze and John A. Cherrey, Groundwater. Vancouver, Canada: Prentice-Hall, 1979.
  13. J. R. Jang, "ANFIS: Adaptive-Network-Based Fuzzy Inference System," IEEE Transactions on systems, man, and cybermetocs, vol. 23, no. 3, 1993, pp. 665-685. https://doi.org/10.1109/21.256541