철로를 구성하는 요소 중 하나인 선로전환기는 열차의 궤도를 변경하는 부품 중 하나로써, 열차가 주행 중에 인접한 다른 선로로 주행방향을 전환할 때 사용된다. 철로운영 지침서에 따르면 내구수명 10년 혹은 전환횟수 20만회를 선로전환기의 교체시점으로 권고하고 있으나, 실제 현장에서는 예산문제 등으로 인하여 잘 지켜지지 않는 것이 현실이다. 또한, 선로전환기에 관한 연구 문헌들에서도 선로전환기의 교체시기에 관한 학술적 실용적 차원의 연구 결과를 찾아볼 수 없다. 본 논문에서는 선로전환기의 전류 적분 값을 이용하여 선로전환기의 교체 시점을 결정하는 시스템을 제안한다. 제안된 시스템은 실제 현장에서 선로전환기의 교체시기를 판별하는 유용한 지표로 사용될 것으로 기대된다.
고속철도 산업의 핵심 요소 중 하나인 선로전환기는 열차의 진로를 제어해주는 부품으로, 해당 설비의 노후화를 조기에 탐지하여 적절한 시기에 선로전환기를 교체하는 것은 안정적인 철도운영에서 매우 중요하다. 본 논문에서는 선로전환기의 작동 시 발생하는 전류 신호를 이용하여 선로전환기의 노후화를 탐지하는 시스템을 제안한다. 제안하는 시스템은 선로전환기로부터 전류 신호를 취득한 후, 주파수 도메인의 특징인 SK값으로 변환하여 특징벡터를 추출하고, PCA를 이용하여 SK벡터의 차원 축소와 동시에 중요한 특징들만을 선택한다. 마지막으로, 선로전환기의 노후화를 탐지하는 문제를 이진 클래스 문제로 해석하여, 기계학습의 대표적 모델인 SVM을 이용하여 선로전환기의 노후화 여부를 탐지한다. 실제 국내에서 운행 중인 선로전환기의 전류 신호를 취득하여 실험한 결과, 선로전환기의 노후화 상황을 안정적으로 탐지함을 확인하였다.
최근 철도 산업의 비중이 증가함에 따라 열차의 안정적인 주행이 그 어느 때보다 중요한 이슈로 부각되고있다. 특히, 열차의 진로 변경을 위한 핵심 요소인 선로전환기의 결함은 열차의 사고와 직결되는 장비 중 하나로써, 그 이상 여부를 사전에 인지하여 선로전환기의 안정성을 확보하기 위한 유지보수의 지능화 시스템이 필요하다. 본 논문에서는 선로전환기의 작동 시 발생하는 소리정보를 활용하여 선로전환기의 비정상 상황을 분류하는 시스템을 제안한다. 제안하는 시스템은 먼저, 선로전환기의 상황별 소리를 수집하고, 다양한 소리정보를 추출하여 특징 벡터를 생성한다. 다음으로, 딥러닝 모델 중 하나인 DNN(Deep Neural Network)을 이용하여 선로전환기의 비정상 상황을 분류한다. 실제 선로전환기의 전환 시 발생하는 소리 데이터를 기반으로 DNN의 파라미터에 따른 다양한 실험을 수행한 결과, 약 93.10%의 정확도를 갖는 안정적인 DNN 모델을 설계하였다.
철도 선로전환기는 열차의 진로를 현재의 궤도에서 다른 궤도로 제어하는 장치이다. 선로전환기의 이상 상황은 탈선 등과 같은 심각한 문제를 발생할 수 있기 때문에, 선로전환기의 스트레스를 지속적으로 모니터링 하는 것은 매우 중요하다. 본 논문에서는 선로전환기가 작동할 때 발생하는 소리 정보를 이용하여 선로전환기의 스트레스를 탐지하는 시스템을 제안한다. 제안하는 시스템은 선로전환기의 동작 시 발생하는 소리 데이터로부터 자질 선택방법을 사용하여 스트레스 탐지에 유효한 감소된 차원의 자질 부분집합을 선택한 후, 기계학습의 대표적 모델인 SVM(Support Vector Machine)을 이용하여 선로전환기의 스트레스 상태 여부를 탐지한다. 테스트용 선로전환기를 실제 구동하며 수집한 소리 데이터를 이용하여, 본 논문에서 제안하는 시스템의 성능을 실험적으로 검증한 바 98%를 넘는 정확도를 확인하였다.
철도 선로전환기는 열차의 진로를 현재의 궤도에서 다른 궤도로 제어하는 장치이다. 선로전환기의 노후화로 인한 이상 상황은 탈선 등과 같은 심각한 문제를 발생할 수 있기 때문에, 선로전환기의 적절한 교체시기를 결정하는 것은 매우 중요하다. 본 논문에서는 국내 철도 현장에서 획득한 선로전환기의 전류신호로부터 다차원 데이터 큐브를 구성하고 OLAP(On-Line Analytical Processing) 분석을 통하여 체계적으로 "교체가 필요한 데이터"와 "교체 시점이 아닌 데이터" 집합을 정제하여 분류하였다. 또한 선로전환기의 교체시기 탐지 문제를 이진 분류 문제로 해석하여 이진 분류기의 대표적 모델인 SVM(Support Vector Machine)을 탐지기로 설계함으로써 선로전환기의 노후화에 따른 적절한 교체시기를 탐지하는 시스템을 제안한다. 이때, 입력되는 전류 신호를 DWT(Discrete Wavelet Transform)와 PCA(Principal Components Analysis) 기법으로 고차원의 특징벡터 신호를 정보의 손실을 최소화하면서 저차원의 특징벡터로 변환한다. 실제 국내에서 운행 중인 선로전환기의 이상상황 정보가 포함된 대규모의 전류 신호를 이용하여 제안하는 시스템의 성능을 실험적으로 검증한 바 98%를 넘는 탐지 정확도를 확인하였다.
열차의 진로를 제어하는 선로전환기는 열차의 안정적인 주행에 있어서 매우 중요한 시설이다. 본 논문에서는 선로전환기의 작동 시 발생하는 소리 정보를 이용하여 선로전환기의 스트레스를 탐지하는 시스템을 제안한다. 먼저 제안하는 시스템은 선로전환기에 스트레스가 쌓인 상태의 소리 정보와 스트레스가 제거된 소리 정보를 수집한 후, 다양한 소리특징들을 추출한다. 추출된 특징들로 부터 t-test를 이용하여 유의성이 확보된 소리 특징 파마미터만을 최종 특징벡터로 선택한다. 마지막으로, 소리 특징 벡터를 입력으로 하는 이진 분류기인 SVM(Support Vector Machine)을 이용하여, 선로전환기의 스트레스 상태 여부를 실시간으로 탐지한다. 실제 테스트용 선로전환기에서 취득한 소리 정보 데이터 셋을 이용하여 본 논문에서 제안하는 시스템의 성능을 실험적으로 검증한다.
전기선로전환기는 분기기에 전환력을 공급하기 위한 장치로 전기선로전환기의 선택은 분기기에 연결되는 간류 구조, 침목, 밀착 쇄정기, 밀착 검지기, 연결간 및 벨 크랭크 등에 따른 제약 사항과 함께 검토된다. 본 논문에서는 현재 우리나라에서 사용 중인 전기선로전환기에 대한 특성을 분석한 후, 기존선 속도 향상 및 안전사고 예방을 위한 보안 설비의 추가적인 설치 필요성 분석 및 속도 향상을 위한 요구 사양을 분석하였다.
열차의 진로를 변경시키는 선로전환기의 고장은 탈선 등과 같은 대형 사고를 유발시킬 수 있는 중요한 시설이다. 따라서 열차운행 안전 측면에서 해당 설비에 대한 모니터링은 필수적이다. 본 논문에서는 선로전환기의 구동 시 발생하는 소리 정보를 이용하여 선로전환기의 이상상황을 탐지하는 시스템을 제안한다. 먼저 제안한 시스템은 소리 센서에서 실시간으로 취득하는 소리 신호를 Power Spectral Density(PSD) 특징으로 변환한다. 추출된 PSD 특징은 이미 성능이 입증된 딥러닝의 대표적인 모델인 Convolutional Neural Network(CNN)에 적용하여 이상상황을 탐지한다. 실제 선로전환기의 전환 시 발생하는 소리 데이터를 취득하여 모의실험을 수행한 결과, 비정상 상황을 안정적으로 탐지함을 확인하였다.
목적: 병원에서 재가 및 시설로 퇴원한 환자가 지역사회에서 건강을 유지하기 위해서는 전환기 돌봄서비스(Transitional care services)가 필요하다. 이를 위해 지역사회 내 의료서비스와 자원을 연계하는 주치의의 역할이 중요시된다. 본 연구에서는 선행연구를 바탕으로 일차진료 의사들의 환자중심성에 대한 인식을 파악하여 환자중심 기반의 서비스 제공을 위해 필요한 정책을 제시하였다. 또한 Transitional Care Service에 대한 일차진료 의사들의 인식을 확인하고 인구사회학적 요인과의 관계를 확인함으로써 서비스 우선순위를 도출하고자 하였다. 방법: 본 연구는 전국의 가정의학과, 내과, 신경과 등 노인 질환과 관련 있는 과의 전문의 자격증이 있으며 자발적으로 온라인 설문조사에 참여할 의사를 표현한 일차진료 의사 259명을 대상으로 수행되었다. 환자중심성 및 전환기 돌봄서비스에 대한 인식을 살펴보기 위해 구조화된 설문지를 개발하였으며, 조사전문업체를 통해 2019년 10월 28일부터 2019년 11월 22일까지 온라인으로 설문조사를 수행하였다. 결과: 본 연구에 대한 주요 결과는 다음과 같다. 첫째, 일차진료 의사들을 대상으로 9가지 전환기 돌봄서비스 인식에 대해 살펴본 결과 "입원 시 진단, 건강상태, 치료계획 및 결과 에 대한 설명(4.4)"과 "퇴원 후 자가 건강관리를 위한 정보 및 훈련 (4.2)"에 대한 필요성이 높게 나타났다. 둘째, 35세 이상 일차진료 의사가 34세 이하 일차진료 의사보다 전환기 돌봄서비스에 대한 인식이 높게 나타났다(F=7.3, p<0.01). 또한, 환자중심성에 대한 인식이 높을수록, 연령이 높을수록, 서울 외 지역에서 근무할수록 전환기 돌봄서비스에 대한 인식이 높게 나타났다. 결론: 본 연구에서는 일차의료를 제공하는 의료진들을 위한 교육프로그램과 지역사회에서 일차의료 의사들을 중심으로 하는 지역 연계 방안을 제시하였다는 점에서 의의가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.