• Title/Summary/Keyword: 전해형상

Search Result 113, Processing Time 0.02 seconds

Preparation and Characterization of Planar-type Artificial Calamine Powder with a High Aspect Ratio for the Application to Ultraviolet and Blue Band Protection Cosmetics (자외선 및 블루영역 차단 화장품 응용을 위한 박막 판형 인공 칼라민 소재의 합성 및 특성 평가 연구)

  • Lee, Jung-Hwan;Lee, Gun-Sub;Jo, Dong-Hyeon;Hong, Da-Hee;Yu, Jae-Hoon;Gwack, Ji-Yoo;Lee, Hee-Chul
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.3
    • /
    • pp.227-235
    • /
    • 2021
  • In this study, we have prepared pure planar-type ZnO and calamine powder containing both ZnO and Fe2O3 components as a raw material for cosmetics with UV and blue band blocking functions. The planar-type ZnO ceramic powder having a high aspect ratio in the range of 20:1 to 50:1 was synthesized by precipitation method in a zinc acetate and sodium citrate mixed solution with the electrolyte obtained by power generation with a zinc-air battery. The content of Fe2O3 in the artificial calamine ceramic powder could be increased by increasing the amount of iron chloride solution added, and in this case, some of the blue region of visible light and ultraviolet light were remarkably absorbed. When potassium acetate was added, the decomposition of the Zn(OH)42- anion in the solution was promoted to facilitate the growth of ZnO crystal in the form of a barrier wall in the vertical direction on the (0001) plane, which could increase UV absorption by providing more opportunities. By controlling the amount of iron chloride solution and potassium acetate solution added, the composition and shape of the thin film plate-shaped artificial calamine ceramic powder can be optimized, and when applied to cosmetic formulations, the light transmittance of the blue region can be greatly reduced.

High Performance Separator at High-Temperature for Lithium-ion Batteries (고온 싸이클 성능이 우수한 리튬 이차전지 분리막)

  • Yoo, Seungmin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.789-793
    • /
    • 2021
  • A lithium secondary battery is the most promising candidate for future energy storage devices. On the other hand, the battery capacity decreases gradually due to the small amount of water and decomposition of the salts during the charging and discharging process, which deteriorates at high temperatures. Many researchers focused on increasing the cycling performance, but there have been few studies on the fundamental problem that removes water and HF molecules. In this study, silane molecules that are capable of absorbing water and HF molecules are introduced to the separator. Firstly, silica-coated amino-silane (APTES, 3-aminopropyltriethoxysilane) was synthesized, then the silica reacted with epoxy-silane, GPTMS ((3-glycidyloxypropyl)trimethoxysilane). A ceramic-coated separator was fabricated using the silane-coated silica, which is coated on porous polyethylene substrates. FT-IR spectroscopy and TEM analysis were performed to examine the chemical composition and the shape of the silane-coated silica. SEM was performed to confirm the ceramic layers. LMO half cells were fabricated to evaluate the cycling performance at 60 ℃. The cells equipped with a GPTMS-silica separator showed stable cycling performance, suggesting that it would be a solution for improving the cycling performance of the Li-ion batteries at high temperatures.

Ni/Au Electroless Plating for Solder Bump Formation in Flip Chip (Flip Chip의 Solder Bump 형성을 위한 Ni/Au 무전해 도금 공정 연구)

  • Jo, Min-Gyo;O, Mu-Hyeong;Lee, Won-Hae;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.700-708
    • /
    • 1996
  • Electroless plating technique was utilized to flip chip bonding to improve surface mount characteristics. Each step of plating procedure was studied in terms pf pH, plating temperature and plating time. Al patterned 4 inch Si wafers were used as substrstes and zincate was used as an activation solution. Heat treatment was carried out for all the specimens in the temperature range from room temperature to $400^{\circ}C$ for $30^{\circ}C$ minutes in a vacuum furnace. Homogeneous distribution of Zn particles of size was obtained by the zincate treatment with pH 13 ~ 13.5, solution concentration of 15 ~ 25% at room temperature. The plating rates for both Ni-P and Au electroless plating steps increased with increasing the plating temperature and pH. The main crystallization planes of the plated Au were found to be (111) a pH 7 and (200) and (111) at pH 9 independent of the annealing temperature.

  • PDF