• Title/Summary/Keyword: 전자-정공 쌍

Search Result 25, Processing Time 0.023 seconds

Power-Dependent Characteristics of $n^+$-p and $p^+$-n GaAs Solar Cells

  • Kim, Seong-Jun;Kim, Yeong-Ho;No, Sam-Gyu;Kim, Jun-O;Lee, Sang-Jun;Kim, Jong-Su;Lee, Gyu-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.236-236
    • /
    • 2010
  • 단일접합 $n^+-p/p^+$ (p-emitter) 및 $p^+-n/n^+$ (n-emitter) GaAs 태양전지 (Solar Cell)를 각각 제작하여, 그 소자특성을 비교 분석하였다. AM 1.5 (1 sun, $100\;mW/cm^2$) 표준광을 조사할 경우, p-emitter/n-emitter 소자의 개방회로전압 (Voc), 단락회로전류 (Jsc), 충전율 (FF), 효율 (Eff)은 각각 0.910/0.917 V, $15.9/16.1\;mA/cm^2$, 78.7/78.9, 11.4/12.1%로서, n-emitter 소자가 다소 크지만 거의 비슷한 값을 가지고 있었다. 태양전지의 집광 특성을 분석하기 위하여 조사광의 출력에 따른 태양전지의 소자 특성을 측정하였다. 조사광 강도가 높아짐에 따라 p-emitter 소자의 특성은 점진적으로 증가하는 반면, n-emitter는 1.3 sun에서 약 1.4 배의 최대 효율 (17%)을 나타내고 조사광이 더 증가함에 따라 급격히 감소하는 특성을 보여 주었다. (그림 참고) 본 연구에서 사용한 2종류 소자의 층구조는 서로 반대되는 대칭구조로서, 모두 가까이에 위치하고 있는 표면전극 (surface finger) 방향으로 소수전하 (minority carrier)가 이동하고 다수전하 (majority carrier)는 기판 (두께 $350\;{\mu}m$)을 통한 먼 거리의 후면전극 (back electrode)으로 표류 (drift)되도록 설계되어 있다. 이때, n-emitter에서는 이동도 (mobility)와 확산길이 (diffusion length)가 높은 전자가 후면전극으로 이동하기 때문에 적정밀도의 전자-정공 쌍 (EHP)이 여기될 경우에는 Jsc와 Eff가 극대화되지만, 조사광 강도 또는 EHP가 더 높아질 경우에는 직렬저항의 증가와 함께 전류-전압 (I-V)의 이상인자 (ideality factor)가 커짐으로서 FF와 효율이 급격히 감소한 결과로 분석된다. 현재 전산모사를 통한 자세한 분석을 진행하고 있으며, 본 결과는 효율 극대화를 위한 최적 층구조 및 도핑 밀도 설계에 활용할 수 있을 것으로 판단된다.

  • PDF

박막 실리콘 태양전지의 도핑층 광손실 제거 기술

  • Baek, Seung-Jae;Pang, Ryang;Park, Sang-Il;Im, Goeng-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.194-195
    • /
    • 2012
  • 박막 실리콘 태양전지에 입사한 빛 중 흡수층인 진성 비정질 실리콘층(i-a-Si)에 흡수된 빛은 출력으로 변환되나, 기타의 층에서 흡수된 빛은 손실 성분이 된다. 이 중 흡수 손실이 큰 층은 도핑 층(p-a-SiC 및 n-a-Si)들인데, 이 들의 흡수 손실을 측정된 광학함수를 이용해 계산해 보면 Fig. 1과 같이 나타난다. p-a-SiC은 광 입사부에 위치하여 단파장 영역의 흡수 손실을 일으키고, n-a-Si 은 태양전지의 후면에 위치하여 장파장 영역의 흡수손실을 일으킨다. 이러한 도핑층에서의 흡수 손실을 제거 또는 개선하기 위해 도핑층의 재료를 기존 재료보다 광학적 밴드갭이 큰 재료로 대체하여 개선하는 방안에 대해 논하고자 한다. 금속 산화물의 밴드갭은 실리콘 화합물에 비하여 대체로 큰 값을 가지기 때문에 이를 기존의 실리콘 화합물 대신으로 사용한다면 광학적 흡수 손실을 효과적으로 줄일 수 있다. 단, 이때 태양전지의 광 전압을 결정하는 인자가 p층과 n층 사이의 일함수 차이에 해당하므로, p층의 대체층으로 사용 가능한 금속 산화물은 일함수가 큰(>5 eV) 재료 중에서 선택하는 것이 적합하며, n층의 대체층으로 사용 가능한 금속 산화물은 일함수가 작은(< 4.2 eV) 재료 중에서 선택하는 것이 적합하다. Table 1에서 p층과 n층 대체용 금속산화물의 후보들을 정리하였다. 먼저 도핑층에서의 광 흡수가 광손실이 될 수 밖에 없는 물리적 근거에 대해서 논하고, 그 실험적인 증명을 제시한다. 이러한 개념을 바탕으로 도핑층의 내부 전기장의 방향을 제어하여 전자-정공쌍을 분리 수집하는 방법을 실험적으로 구현하였다. 이어서 금속 산화물을 부분적으로 대체하여 흡수 손실을 개선하는 방안을 제시한다. WOx, NiOx, N doped ZnO 등을 적용하여 그 효과를 비교 검토하였다. 끝으로 금속산화믈 대체 또는 쇼트키 접합을 적용하여 도핑층의 광 흡수를 줄이고 효율을 향상하는 방안을 제시한다. 그 사례로서 WOx, MoOx, LiF/Al의 적용결과를 살펴보고 추가 개선방안에 대해 토의할 것이다. 결론적으로 광학적 밴드갭이 큰 재료를 도핑층 대신 사용하여 흡수 손실을 줄이는 것이 가능하다는 것을 알 수 있고, 이 때 일함수 조건이 만족이 되면 광 전압의 손실도 최소화할 수 있다는 점을 확인할 수 있었다. 현재까지 연구의 한계와 문제점을 정리하고, 추가 연구에 의한 개선 가능성 및 실용화 개발과의 연관관계 등을 제시할 것이다.

  • PDF

The Characteristics Analysis of GIDL current due to the NBTI stress in High Speed p-MOSFET (고속용 p-MOSFET에서 NBTI 스트레스에 의한 GIDL 전류의 특성 분석)

  • Song, Jae-Ryul;Lee, Jong-Hyung;Han, Dae-Hyun;Lee, Yong-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.348-354
    • /
    • 2009
  • It has analyzed that the device degradation by NBTI (Negative Bias Temperature Instability) stress induced the increase of gate-induced-drain-leakage(GIDL) current for p-MOSFETs. It is shown that the degradation magnitude, as well as its time, temperature, and field dependence, is govern by interface traps density at the silicon/oxide interface. from the relation between the variation of threshold voltage and subthreshold slope, it has been found that the dominant mechanism for device degradation is the interface state generation. From the GIDL measurement results, we confined that the EHP generation in interface state due to NBTI stress led to the increase of GIDL current. Therefore, one should take care of the increased GIDL current after NBTI stress in the ultra-thin gate oxide device. Also, the simultaneous consideration of reliability characteristics and dc device performance is highly necessary in the stress engineering of nanoscale CMOSFETs.

Photoelectrochemical Characteristics at the Titanium Oxide Electrode with Light Intensity and pH of the Solution (산화 티타늄 전극의 광학농도와 pH에 따른 광전기화학적 특성)

  • Park, Seong-Yong;Cho, Byung-Won;Yun, Kyung-Suk
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.255-262
    • /
    • 1994
  • Arc melted Ti-5Bi alloy was oxidized by thermal oxidation method. In the present study free energy efficiency(${\eta}_e$) of titanium oxide electrode(TOE) was measured as a function of light intensity and light energy. Flat-band potential of TOE was measured as a function of the light intensity and the solution pH. The ${\eta}_e$ of TOE increased with the increase of light intensity and tight energy to maximum value of 3.2% and 13%, respectively, at $0.2W/cm^2$ and 4.0eV. The ${\eta}_e$ was strongly dependent on the magnitude of the bias voltage. Maximum value was found at 0.5V bias. Photocurrent of TOE was controlled by electron-hole pair generation in depletion layer. The flat-band potential of the illuminated TOE shifted to -0.065V/decade with increasing light intensity. With the decrease of pH of electrolyte, flat-band potential shifted to anodic direction. The experimental slope was in good agreement with the Nernstian value of 0.059V/pH decade.

  • PDF

The Degradation Analysis of Characteristic Parameters by NBTI stress in p-MOS Transistor for High Speed (고속용 p-MOS 트랜지스터에서 NBTI 스트레스에 의한 특성 인자의 열화 분석)

  • Lee, Yong-Jae;Lee, Jong-Hyung;Han, Dae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.80-86
    • /
    • 2010
  • This work has been measured and analyzed the device degradation of NBTI (Negative Bias Temperature Instability) stress induced the increase of gate-induced-drain-leakage(GIDL) current for p-MOS transistors of gate channel length 0.13 [${\mu}m$]. From the relation between the variation of threshold voltage and subthreshold slop by NBTI stress, it has been found that the dominant mechanism for device degradation is the interface state generation. From the GIDL measurement results, we confined that the EHP generation in interface state due to NBTI stress led to the increase of GIDL current. As a results, one should take care of the increased GIDL current after NBTI stress in the ultra-thin gate oxide device. Also, the simultaneous consideration of reliability characteristics and dc device performance is highly necessary in the stress parameters of nanoscale CMOS communication circuit design.