• Title/Summary/Keyword: 전자선 조사

Search Result 755, Processing Time 0.031 seconds

Effect of Gamma Irradiation for Hygienic Long-Term Storage on Biological Activity of Teucrium veronicoides (위생적인 장기 보존을 위한 감마선 조사가 곽향(Teucrium veronicoides)의 생리활성에 미치는 영향)

  • Park, Hye-Jin;Park, Ki-Tae;Cho, Young-Je
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.581-591
    • /
    • 2017
  • The purpose of this study was to examine the biological activities of gamma-irradiated Teucrium veronicoides. In photostimulated luminescence analysis, non-irradiated sample showed lower than 700 photon counts (PCs), whereas irradiated (5 and 10 kGy) samples showed higher than 700 PCs. The thermoluminescence ratio of non-irradiated samples was less than 0.1, whereas the values of irradiated samples were greater than 0.1. Electron spin resonance analysis was performed confirmed for irradiation identification. The total phenolic contents of hot-water and 50% ethanol extracts were higher than those values after irradiation at 10 kGy. Regarding 1,1-diphenyl-2-picrylhydrazyl radical inhibitory activity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity, antioxidant protection factor, thiobarbituric acid reactive substance inhibitory activity as antioxidant test and xanthine oxidase inhibitory activity, the effect of gamma irradiation had on significant effects. On the other hand, ${\alpha}-amylase$ inhibitory activity of 10 kGy-irradiated hot-water extract was 23.6% higher than that of the non-irradiated sample. Thus, gamma irradiation could be used for the long-term storage of Teucrium veronicoides.

Evaluation of Electron Boost Fields based on Surgical Clips and Operative Scars in Definitive Breast Irradiation (유방보존술 후 방사선치료에서 수술 흉터와 삽입된 클립을 이용한 전자설 추가 방사선 조사야 평가)

  • Lee, Re-Na;Chung, Eun-Ah;Lee, Ji-Hye;Suh, Hyun-Suk
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.236-242
    • /
    • 2005
  • Purpose: To evaluate the role of surgical clips and scars in determining electron boost field for early stage breast cancer undergoing conserving surgery and postoperative radiotherapy and to provide an optimal method in drawing the boost field. Materials and Methods: Twenty patients who had $4{\sim}7$ surgical clips in the excision cavity were selected for this study. The depth informations were obtained to determine electron energy by measuring the distance from the skin to chest wall (SCD) and to the clip implanted in the most posterior area of tumor bed. Three different electron fields were outlined on a simulation film. The radiological tumor bed was determined by connecting all the clips implanted during surgery Clinical field (CF) was drawn by adding 3 cm margin around surgical scar. Surgical field (SF) was drawn by adding 2 cm margin around surgical clips and an Ideal field (IF) was outlined by adding 2 cm margin around both scar and clips. These fields were digitized into our planning system to measure the area of each separate field. The areas of the three different electron boost fields were compared. Finally, surgical clips were contoured on axial CT images and dose volume histogram was plotted to investigate 3-dimensional coverage of the clips. Results : The average depth difference between SCD and the maximal clip location was $0.7{\pm}0.55cm$. Greater difference of 5 mm or more was seen in 12 patients. The average shift between the borders of scar and clips were 1.7 1.2, 1.2, and 0.9 cm in superior, inferior, medial, and lateral directions, respectively. The area of the CF was larger than SF and IF in 6y20 patients. In 15/20 patients, the area difference between SF and if was less than 5%. One to three clips were seen outside the CF in 15/20 patients. In addition, dosimetrically inadequate coverage of clips (less than 80% of prescribed dose) were observed in 17/20 patients when CF was used as the boost field. Conclusion: The electron field determined from clinical scar underestimates the tumor bed in superior-inferior direction significantly and thereby underdosing the tissue at risk. The electron field obtained from surgical clips alone dose not cover the entire scar properly As a consequence, our technique, which combines the surgical clips and clinical scars in determining electron boost field, was proved to be effective in minimizing the geographical miss as well as normal tissue complications.

Effect of an Acrylic Plate and SSD on Dose Profile and Depth Dose Distribution of 9 MeV Electron Beams (에너지 저하체로서 아크릴과 SSD 가 9MeV 전자선의 측방 및 깊이선량분포에 미치는 효과)

  • 강위생
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.65-71
    • /
    • 1998
  • The aims are to evaluate the effects of an 1.0 cm acrylic plate and SSD on the dose profile and depth dose distribution of 9 MeV electron beam and to analyse adequacy for using an acrylic plate to reduce energy of electron beams. An acrylic plate of 1.0 cm thickness was used to reduce energy of 9 MeV electron beam to 7 MeV. The plate was put on an electron applicator at 65.4 cm distance from x-ray target. The size of the applicator was 10${\times}$l0cm at 100 cm SSD. For 100cm, l05cm and 110cm SSD, depth dose on beam axis and dose profiles at d$\_$max/ on two principal axes were measured using a 3D water phantom. From depth dose distributions, d$\_$max/, d$\_$85/, d$\_$50/ and R$\_$p/, surface dose, and mean energy and peak energy at surface were compared. From dose profiles flatness, penumbra width and actual field size were compared. For comparison, 9 MeV electron beams were measured. Surface dose of 7 MeV electron beams was changed from 85.5% to 82.2% increasing SSD from 100 cm to 110 cm, and except for dose buildup region, depth dose distributions were independent of SSD. Flatness of 7 MeV ranged from 4.7% to 10.4% increasing SSD, comparing 1.4% to 3.5% for 9 MeV. Penumbra width of 7 MeV ranged from 1.52 cm to 3.03 cm, comparing 1.14 cm to 1.63 cm for 9 MeV. Actual field size increased from 10.75 cm to 12.85 cm with SSD, comparing 10.32 cm to 11.46 cm for 9 MeV. Virtual SSD's of 7 and 9 MeV were respectively 49.8 cm and 88.5cm. In using energy reducer in electron therapy, depth dose distribution were independent of SSD except for buildup region as well as open field. In case of using energy reducer, increasing SSD made flatness to deteriorate more severely, penumbra width more wide, field size to increase more rapidly and virtual SSD more short comparing with original electron beam. In conclusion, it is desirable to use no energy reducer for electron beam, especially for long SSD.

  • PDF

Deposition and Characterization of SiN and SiC for Membrane Applications

  • 강정호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.1
    • /
    • pp.83-90
    • /
    • 1998
  • LPCVD를 이용하여 증착한 SiN과 ECR plasma CVD를 이용하여 증착한 SiC의 물 성과 적용가능성을 시험하였다. LPCVD로 증착된 SiN은 열처리 없이 저 응력의 박막형성이 가능했으며 가시광투과도 표면 평활도 역시 우수하였다. 탄성계수 값이 크지 않아 자성센서 의 지지구조로 사용할 경우 자기공명에 의한 진동을 크게 구속하지 않아 유리할것으로 기대 된다. 반면 ECR plasma CVD로 증착된 SiC는 SiN보다는 못하지만 다른 방법에 의해 증착 된 SiC에 비해서는 가시광 투과도 및 표면 평활도가 후수하므로 X-선 조사에 대한 안정성 과 더불어 X-선 마스크용 membrane으로서 사용이 적절할 것으로생각된다.

A study on the piezoelectric porperties of organic polymeric materials (유기 고분자재료의 압전특성에 관한 연구)

  • 김종석;박강식;박광현;조기선;김진식
    • Electrical & Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.295-301
    • /
    • 1992
  • 본 연구는 고분자 압전 재료인 PVDF 필름을 시료로 사용하고 분극 조건을 변화시켜 가며 분극화 시킨후 압전계수를 측정하였다. 또한 X-선 회절 장치와 DSC 장치를 이용하여 결정구조 변화를 조사하였으며 또한 분극에 의해 생성된 결정의 용융특성도 관찰하였다. 분극되지 않은 시료의 용융 온도는 약 175.deg.C 부근에서 나타났으나 분극된 시료는 분극 전압이 증가함에 따라 184.deg.C부근에서 새로운 용융점이 나타나기 시작하였으며 분극 전압이 증가할수록 새로운 용융점이 점차 뚜렷해졌다.

  • PDF

The Relative Effectiveness of Various Radiation Sources on the Resistivity Change in n-Type Silicon

  • Jung, Wun
    • Nuclear Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.91-101
    • /
    • 1969
  • Resistivity changes of n-type float-zone silicon crystals with 6.4$\times$10$^{14}$ to 1.25$\times$10$^{17}$ phosphorus atoms/㎤ due to irradiation by (1) 1 MeV electrons, (2) two types of research reactors, and (3) $Co^{60}$ ${\gamma}$-ray sources were investigated. The results were analyzed on the basis of a simple exponential formula derived by Buehler. While the formula gave a fair fit in the low fluence range in most cases, the deviation was quite appreciable in the case of 1 MeV electron irradiation, and a linear change gave better fit in some cases. The large change in the carrier removal rate in electron-irradiated samples in the high fluence range was analyzed in detail in terms of the Fermi level cross-over of the defect levels. Based on the damage constants evaluated from the initial portion of data where the formula was applicable, the relative effectiveness of various radiation sources in causing the resistivity change in n-type silicon was compared. The TRIGA Mark II reactor neutrons, for example, were found to be about 40 times more effective than 1 MeV electrons. The dependence of the damage constant on the initial carrier concentration was also examined. The physical basis of the exponential law and the effect of the Fermi level cross-over of the defect levels on the resistivity change in the high fluence ranges are discussed.

  • PDF

A Study on the Dose Changes Depending on the Shielding Block Type of Irradiation During Electron Beam Theraphy (전자선치료 시 조사부위 차폐물 형태에 따른 선량변화 연구)

  • Lee, Sun-Yeb;Park, Cheol-Soo;Lee, Jae-Seung;Goo, Eun-Hoe;Cho, Jae-Hwan;Kim, Eng-Chan;Moon, Soo-Ho;Kim, Jin-Soo;Park, Cheol-Woo;Dong, Kyung-Rae;Kweon, Dae-Cheol
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • The primary focus of this study was to explore the variation in dose distributions of electron beams between different types of construction structure of cut-out blocks embodied in electron cones, given that the structure is considered one of the causes of multiple scattered radiation from electrons which may affect dose distributions. For evaluation, two types of cut-out blocks, divergency and straight, manufactured for this study, were compared in terms of area of interval in distribution of dose, and flatness and symmetric state of surface being radiated. The results showed that divergency cut-out blocks reduced the lateral scattering effects on the thickness of cut-out blocks more substantially than straight ones, leading to more uniform dose distribution at baseline depth. Notably in divergency cut-out blocks, the high dose area decreased more significantly, and more uniform dose distribution was observed at the edge of the irradiated field. This points to a need to consider the characteristics of dose distribution of electron beams when setting up radiotherapy planing at the venues. Therefore, this study is significant as an exploratory work for ensuring high accuracy in dose delivery for patients.

Development of the EGS4 Control Code to Calculate the Dose Distributions in a Strong Magnetic Field (자기장이 인가된 물팬텀 속의 전자선 선량분포 계산을 위한 EGS4 제어코드의 개발과 응용)

  • 정동혁;오영기;신교철;김진기;김기환;김정기;이강규;문성록;김성규
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • In this work we developed a EGS4 control code to calculate the dose distributions for high energy electron beams in water phantom applied longitudinal magnetic field. We reviewed the electron's motion in magnetic field and delivered equations for direction changs of the electron by the external magnetic field. The mathematical results are inserted into the EGS4 code system to account for the presence of external magnetic fields in phantom. The electron pencil beam paths of 6 MeV in water phantom are calculated for magnetic fields of 1-3 T and the dose distributions for a field of 1.0 cm in diameter are calculated for magnetic fields of 0.6-1 T using the code. From the results of path calculations we found that the lateral ranges of the electrons are reduced in the magnetic field of 3 T. For a field of 1 cm diameter and a magnetic field of 1 T, the small dose enhancement near the range of the electrons on the depth dose and the penumbra reduction of 0.15 cm on the beam profile are observed. We discussed and evaluated the results from the theoretical concepts.

  • PDF

Effect of Irradiation and Packaging Methods on the Oxidation of Cholesterol in Raw and Cooked Chicken Leg Meat (방사선 조사 및 포장방법이 생계육 및 조리계육의 콜레스테롤 산화에 미치는 영향)

  • Lee, J.I.;Shin, T.S.;Jin, S.K.;Kim, I.S.;Kim, Y.H.;Joo, S.T.;Park, G.B.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.825-834
    • /
    • 2003
  • Chicken thigh from a retail market were used as experimental samples. Some chicken samples of raw state were packaged with PVDC at an aerobic and vacuum condition. The other samples were cooked until core temperature arrived at 70$^{\circ}C$ and then packaged immediately in the same way of raw samples. After samples were irradiated by electron beam at 6 kGy, they were stored in a refrigerator. Identification and quantity of cholesterol oxides were made at 0 and 7 days of storage, respectively. During the early stage of storage, 7$\beta$-hydroxycholesterol, $\alpha$,$\beta$-epoxide, cholestanetriol and 7-ketocholesterol were produced from the raw meat samples, and the production of these chemicals were significantly higher(P〈0.05) from the samples with aerobic packaging than those with vacuum packaging. With storage time, 7$\alpha$-hydroxycholesterol, 6-ketocholesterol and some other chemicals, which were not found during the early stage of storage, were found. Also, the formation of these chemicals were significantly increased(P〈0.05) with storage time. Cholesterol and lipid oxidation products of cooked meat after irradiation and irradiated meat after cooking were significantly increased(P〈0.05) with storage time for all treatments, and vacuum packaging results in showed significantly lower value(P〈0.05) than aerobic packaging. Summarizing the aforementioned results, it was found that the formation of cholesterol and lipid oxides and lipid oxidation was more easily affected by packaging condition than irradiation.