• Title/Summary/Keyword: 전자기식 액추에이터

Search Result 7, Processing Time 0.021 seconds

Design of Hybrid Electromagnetic Actuator against Microvibration (미진동 저감을 위한 복합형 전자기식 액추에이터 설계)

  • Moon, S.J.;Choi, S.M.;Jeong, J.A.;Kim, C.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.299-304
    • /
    • 2009
  • A hybrid electromagnetic actuator with an air spring is designed so as to achieve the desired isolation reduce the vibration efficiency on the floor vibration. The performance specification of the hybrid electromagnetic actuator is determined based on the vibration criterion for vibration-sensitive equipment. In basic design stage of the electromagnetic actuator, the simple reluctance method is adapted to analyze magnetic circuits. The result is verified by finite element analysis using ANSYS Emag. Finally, some design parameters are optimized under several constraint conditions. Through this study, the design procedure for a specific electromagnetic actuator is set up using a simple reluctance method.

  • PDF

Development of a Fatigue Testing System for Micro-Specimens (마이크로시험편용 피로시험기 개발)

  • Kim, Chung-Youb;Sharpe, W.N.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1201-1207
    • /
    • 2010
  • In this study, a fatigue testing system capable of performing load-controlled tension-tension tests for micro-specimens was developed by using an electro-magnetic actuator. Using this system, fatigue testing as well as tensile testing can be performed over a wide range of loading frequencies. Further, a new laser interferometric strain/displacement gage was used during fatigue testing to obtain high-resolution measurements of the cyclic deformation of thin films. Since the testing machine and the displacement gage are stable and show quick responses, the displacement can be measured instantaneously and continuously during fatigue testing, and high-resolution results can be obtained.

Replication of Automotive Vibration Target Signal Using Iterative Learning Control and Stewart Platform with Halbach Magnet Array (반복학습제어와 할바흐 자석 배열 스튜어트 플랫폼을 이용한 차량 진동 신호 재현)

  • Ko, Byeongsik;Kang, SooYoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.438-444
    • /
    • 2013
  • This paper presents the replication of a desired vibration response by iterative learning control (ILC) system for a vibration motion replication actuator. The vibration motion replication actuator has parameter uncertainties including system nonlinearity and joint nonlinearity. Vehicle manufacturers worldwide are increasingly relying on road simulation facilities that put simulated loads and stresses on vehicles and subassemblies in order to reduce development time. Road simulation algorithm is the key point of developing road simulation system. With the rapid progress of digital signal processing technology, more complex control algorithms including iterative learning control can be utilized. In this paper, ILC algorithm was utilized to produce simultaneously the six channels of desired responses using the Stewart platform composed of six linear electro-magnetic actuators with Halbach magnet array. The convergence rate and accuracy showed reasonable results to meet the requirement. It shows that the algorithm is acceptable to replicate multi-channel vibration responses.