• Title/Summary/Keyword: 전자광학추적 장치

Search Result 5, Processing Time 0.019 seconds

전자광학 추적장치의 운용현황 및 발전추세

  • Yun, Sang-No
    • Defense and Technology
    • /
    • no.1 s.155
    • /
    • pp.30-37
    • /
    • 1992
  • 앞으로 개발되는 각종 첨단 무기체계에서의 고도정밀 자동화 추세에 비추어 볼때, 전자광학 추적기(EOTS)는 필수적인 위치를 점하게 될 것으로 예상된다. 국내에서도 EOTS를 사격통제 장비로 채택한 무기체계가 일부운용 및 개발되고 있으나, 그 대부분을 선진기술에 의존하고 있는 실정이다. EOTS는 전자, 신소재, 광학, 컴퓨터 등의 첨단 핵심기술이 복합 응용된 분야로서 우리가 반드시 확보해야할 기술이며, 이에 대한 장기적인 기술육성이 절실히 요망된다

  • PDF

Wind-Tunnel Investigation for the Aerodynamic Characteristics of Electro-Optical Targeting System (풍동시험을 통한 전자광학 추적장치의 공력특성 연구)

  • Lee, Sang-Il;Lee, Jae-Won;Yee, Kwan-Jung;Oh, Se-Jong;Jung, Hyeone-Seok;Kim, Dae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.240-247
    • /
    • 2009
  • Wind tunnel test for Electro-Optical Targeting System(EOTS) has been conducted to investigate the aerodynamic characteristics, especially the torque characteristics of the rotating parts to insure the enough actuator power during the actual operation. The influence of EOTS's complex configuration, such as the observation window, has been investigated by comparing with the results of the simplified models made of half sphere and the cylinder. It has been found that the position of the observation window of EOTS has an effect on surface pressure distribution and the torque characteristics of the rotating observation part.

Design and Evaluation of Intelligent Helmet Display System (지능형 헬멧시현시스템 설계 및 시험평가)

  • Hwang, Sang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.417-428
    • /
    • 2017
  • In this paper, we describe the architectural design, unit component hardware design and core software design(Helmet Pose Tracking Software and Terrain Elevation Data Correction Software) of IHDS(Intelligent Helmet Display System), and describe the results of unit test and integration test. According to the trend of the latest helmet display system, the specifications which includes 3D map display, FLIR(Forward Looking Infra-Red) display, hybrid helmet pose tracking, visor reflection type of binocular optical system, NVC(Night Vision Camera) display, lightweight composite helmet shell were applied to the design. Especially, we proposed unique design concepts such as the automatic correction of altitude error of 3D map data, high precision image registration, multi-color lighting optical system, transmissive image emitting surface using diffraction optical element, tracking camera minimizing latency time of helmet pose estimation and air pockets for helmet fixation on head. After completing the prototype of all system components, unit tests and system integration tests were performed to verify the functions and performance.

Implementation of View Point Tracking System for Outdoor Augmented Reality (옥외 증강현실을 위한 관측점 트래킹 시스템 구현)

  • Choi, Tae-Jong;Kim, Jung-Kuk;Huh, Woong;Jang, Byung-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.45-54
    • /
    • 2004
  • In this paper, a view point tracking system has been realized for outdoor augmented reality including broad area monitoring. Since the surroundings of the moving view point are changing, it is necessary to track the position and observation moment of the view point system for consistency between real and virtual images. For this reason, the GPS(Global Positioning System) is applied to the realized system for tracking the information on position and direction of the moving system. In addition, an optical position tracking system that is able to track view point in a limited area is used, because the local tracking system has to trace the image variation, seen to the observer in a moving vehicle, at a particular position and time. It was found that the realized outdoor augmented reality system, which combined the virtual information tracked in real time with the real image, can be very practical in various application area.

Design and Fabrication of Hard X-ray Zone Plate (경 엑스선 존 플레이트(Zone Plate) 설계 및 제작)

  • Chon, Kwon-Su
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.3
    • /
    • pp.27-31
    • /
    • 2010
  • Spatial resolution is determined by the performance of x-ray optics used in the x-ray imaging system. A zone plate was designed for obtaining a high spatial resolution image at x-ray energy of 8.5keV. A spatial resolution of 80 nm was estimated by the ray tracing when an x-ray tube of tungsten targe was used instead of synchrotron radiation. The designed zone plate of outermost zone width of 40nm was successfully fabricated by the electron-beam lithography.