• Title/Summary/Keyword: 전이학습

Search Result 406, Processing Time 0.028 seconds

Fashion Search Service Using Transfer Learning (전이 학습을 이용한 패션 스타일 검색 서비스)

  • Lee, Byeong-Jun;Sim, Ju-Yong;Lee, Jun-Yeong;Lee, Songwook
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.432-434
    • /
    • 2022
  • 우리는 전이 학습을 이용하여 원하는 특정 패션 스타일 분류기를 학습하였다. 패션 스타일 검색 결과물을 온라인 쇼핑몰과 연결하는 웹 서비스를 사용자에게 제공한다. 패션 스타일 분류기는 구글에서 이미지 검색을 통해 수집된 데이터를 이용하여 ResNet34[1]에 전이 학습하였다. 학습된 분류 모델을 이용하여 사용자 이미지로부터 패션 스타일을 17가지 클래스로 분류하였고 F1 스코어는 평균 65.5%를 얻었다. 패션 스타일 분류 결과를 네이버 쇼핑몰과 연결하여 사용자가 원하는 패션 상품을 구매할 수 있는 서비스를 제공한다.

Effects of Self-directed Learning and Motivation to Transfer on Transfer of Learning for Nursing Students in Clinical Practice (간호대학생의 자기주도학습과 전이동기가 임상실습 중 학습전이에 미치는 영향)

  • Han, Eunbi;Cho, Soohyun;Cho, Hyojin;Park, Soohyun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.262-270
    • /
    • 2021
  • The purpose of this study was to identify factors influencing the transfer of learning for nursing students in clinical practice. This study is a descriptive survey research conducted with 113 nursing students. Self-directed learning, motivation to transfer, and transfer of learning were measured. Data were analyzed by descriptive analysis, independent t-test, and ANOVA. The transfer of learning were significantly different according to the interpersonal relationship (t=10.43, p=.002), the satisfaction of nursing major (t=3.81, p=.006), satisfaction of nursing skills laboratory (t=4.61, p=.004). Transfer of learning had a correlation with self-directed learning, motivation (r=.46, p=<.001), and motivation to transfer (r=.60, p=<.001). In addition, motivation to transfer, the satisfaction of nursing skills laboratory, and learning evaluation were significant predictors of transfer of learning. Finally, in order to increase the transfer of learning for nursing students, nursing instructors need to encourage motivation to transfer, and to apply educational strategies that increase self-directed learning, as well as the satisfaction of the nursing skills laboratory.

Proper Base-model and Optimizer Combination Improves Transfer Learning Performance for Ultrasound Breast Cancer Classification (다단계 전이 학습을 이용한 유방암 초음파 영상 분류 응용)

  • Ayana, Gelan;Park, Jinhyung;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.655-657
    • /
    • 2021
  • It is challenging to find breast ultrasound image training dataset to develop an accurate machine learning model due to various regulations, personal information issues, and expensiveness of acquiring the images. However, studies targeting transfer learning for ultrasound breast cancer images classification have not been able to achieve high performance compared to radiologists. Here, we propose an improved transfer learning model for ultrasound breast cancer classification using publicly available dataset. We argue that with a proper combination of ImageNet pre-trained model and optimizer, a better performing model for ultrasound breast cancer image classification can be achieved. The proposed model provided a preliminary test accuracy of 99.5%. With more experiments involving various hyperparameters, the model is expected to achieve higher performance when subjected to new instances.

  • PDF

Sound event classification using deep neural network based transfer learning (깊은 신경망 기반의 전이학습을 이용한 사운드 이벤트 분류)

  • Lim, Hyungjun;Kim, Myung Jong;Kim, Hoirin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.143-148
    • /
    • 2016
  • Deep neural network that effectively capture the characteristics of data has been widely used in various applications. However, the amount of sound database is often insufficient for learning the deep neural network properly, so resulting in overfitting problems. In this paper, we propose a transfer learning framework that can effectively train the deep neural network even with insufficient sound event data by employing rich speech or music data. A series of experimental results verify that proposed method performs significantly better than the baseline deep neural network that was trained only with small sound event data.

In the relationship between design competency strengthening education for designers and individual performance, Mediating effect of learning self-efficacy and corporate learning transfer climate (디자이너 대상 디자인 역량강화교육과 개인성과와의 관계에서 학습 자기효능감과 기업 학습전이풍토의 매개효과)

  • Kim, Gun-Woo;Kim, Sun-Ah
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.897-908
    • /
    • 2022
  • The purpose of this study is to prove the hypothesis that the learning transfer climate, such as individual learning self-efficacy and corporate innovative knowledge transfer, will play a mediating role in the relationship between design competency strengthening education and individual performance considering the designer's characteristics. This is meaningful in expanding the meaning of design education and training by quantitatively analyzing the learning transfer climate that affects learning self-efficacy and organizational culture according to the characteristics of designers, unlike existing studies that simply investigate the satisfaction of education. Specifically, this study set up seven hypotheses, and as a result, it was found that design capacity building education for designers, learning self-efficacy, and learning transfer climate of companies had a significant effect on individual performance.

Deep Learning-based Pes Planus Classification Model Using Transfer Learning

  • Kim, Yeonho;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.21-28
    • /
    • 2021
  • This study proposes a deep learning-based flat foot classification methodology using transfer learning. We used a transfer learning with VGG16 pre-trained model and a data augmentation technique to generate a model with high predictive accuracy from a total of 176 image data consisting of 88 flat feet and 88 normal feet. To evaluate the performance of the proposed model, we performed an experiment comparing the prediction accuracy of the basic CNN-based model and the prediction model derived through the proposed methodology. In the case of the basic CNN model, the training accuracy was 77.27%, the validation accuracy was 61.36%, and the test accuracy was 59.09%. Meanwhile, in the case of our proposed model, the training accuracy was 94.32%, the validation accuracy was 86.36%, and the test accuracy was 84.09%, indicating that the accuracy of our model was significantly higher than that of the basic CNN model.

A Study on the Transfer Effect of Continuing Education in the National Archives of Korea for Records Managers (기록물관리 전문요원의 국가기록원 계속교육 전이효과에 관한 연구)

  • Jeong, Him-Chan;Kim, Soojung
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.18 no.3
    • /
    • pp.71-95
    • /
    • 2018
  • This study aims to analyze the factors affecting the transfer effect of continuing education in the National Archives of Korea and suggest ways to improve the education. To do that, the study grouped the factors that affect the transfer effect of continuing education into learner characteristics, educational program characteristics, and organizational transition climate. An online survey was conducted with records managers. In total, 272 responses were received and statistically analyzed. Based on the records managers' opinions, this study suggested ways to improve the transfer effect of continuing education from the perspectives of learners, the educational program, the organizational transition climate, and the roles of the National Archives of Korea.

Learning and Transferring Deep Neural Network Models for Image Caption Generation (이미지 캡션 생성을 위한 심층 신경망 모델 학습과 전이)

  • Kim, Dong-Ha;Kim, Incheol
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.617-620
    • /
    • 2016
  • 본 논문에서는 이미지 캡션 생성과 모델 전이에 효과적인 심층 신경망 모델을 제시한다. 본 모델은 멀티 모달 순환 신경망 모델의 하나로서, 이미지로부터 시각 정보를 추출하는 컨볼루션 신경망 층, 각 단어를 저차원의 특징으로 변환하는 임베딩 층, 캡션 문장 구조를 학습하는 순환 신경망 층, 시각 정보와 언어 정보를 결합하는 멀티 모달 층 등 총 5 개의 계층들로 구성된다. 특히 본 모델에서는 시퀀스 패턴 학습과 모델 전이에 우수한 LSTM 유닛을 이용하여 순환 신경망 층을 구성하고, 컨볼루션 신경망 층의 출력을 임베딩 층뿐만 아니라 멀티 모달 층에도 연결함으로써, 캡션 문장 생성을 위한 매 단계마다 이미지의 시각 정보를 이용할 수 있는 연결 구조를 가진다. Flickr8k, Flickr30k, MSCOCO 등의 공개 데이터 집합들을 이용한 다양한 비교 실험을 통해, 캡션의 정확도와 모델 전이의 효과 면에서 본 논문에서 제시한 멀티 모달 순환 신경망 모델의 우수성을 입증하였다.

Research on Transformer-Based Approaches for MBTI Classification Using Social Network Service Data (트랜스포머 기반 MBTI 성격 유형 분류 연구 : 소셜 네트워크 서비스 데이터를 중심으로)

  • Jae-Joon Jung;Heui-Seok Lim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.529-532
    • /
    • 2023
  • 본 논문은 소셜 네트워크 이용자의 텍스트 데이터를 대상으로, 트랜스포머 계열의 언어모델을 전이학습해 이용자의 MBTI 성격 유형을 분류한 국내 첫 연구이다. Kaggle MBTI Dataset을 대상으로 RoBERTa Distill, DeBERTa-V3 등의 사전 학습모델로 전이학습을 해, MBTI E/I, N/S, T/F, J/P 네 유형에 대한 분류의 평균 정확도는 87.9181, 평균 F-1 Score는 87.58를 도출했다. 해외 연구의 State-of-the-art보다 네 유형에 대한 F1-Score 표준편차를 50.1% 낮춰, 유형별 더 고른 분류 성과를 보였다. 또, Twitter, Reddit과 같은 글로벌 소셜 네트워크 서비스의 텍스트 데이터를 추가로 분류, 트랜스포머 기반의 MBTI 분류 방법론을 확장했다.

  • PDF

Transfer Learning-based Multi-Modal Fusion Answer Selection Model for Video Question Answering System (비디오 질의 응답 시스템을 위한 전이 학습 기반의 멀티 모달 퓨전 정답 선택 모델)

  • Park, Gyu-Min;Park, Seung-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.548-553
    • /
    • 2021
  • 비디오 질의 응답은 입력으로 주어진 비디오와 질문에 적절할 정답을 제공하기 위해 텍스트, 이미지 등 다양한 정보처리가 요구되는 대표적인 multi-modal 문제이다. 질의 응답 시스템은 질의 응답의 성능을 높이기 위해 다수의 서로 다른 응답 모듈을 사용하기도 하며 생성된 정답 후보군 중 가장 적절할 정답을 선택하는 정답 선택 모듈이 필요하다. 정답 선택 모듈은 응답 모듈의 서로 다른 관점을 고려하여 응답 선택을 선택할 필요성이 있다. 하지만 응답 모듈이 black-box 모델인 경우 정답 선택 모듈은 응답 모듈의 parameter와 예측 분포를 통해 지식을 전달 받기 어렵다. 그리고 학습 데이터셋은 응답 모듈이 학습에 사용했기 때문에 과적합 문제로 각 모듈의 관점을 학습하기엔 어려우며 학습 데이터셋 이외 비교적 적은 데이터셋으로 학습해야 하는 문제점이 있다. 본 논문에서는 정답 선택 성능을 높이기 위해 전이 학습 기반의 멀티모달 퓨전 정답 선택 모델을 제안한다. DramaQA 데이터셋을 통해 성능을 측정하여 제안된 모델의 우수성을 실험적으로 증명하였다.

  • PDF