Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.313-313
/
2022
일반적으로 가뭄은 특정지역에서 평균 이하의 강수량이 발생되는 현상으로, 강수량이 감소되면 토양수분, 하천수 수위, 저수지 수위, 지하수위 등이 순차적으로 감소한다. 수문학적 가뭄은 기상학적 가뭄 및 농업 가뭄에 비해 늦게 발현되는데, 이는 강수량의 부족이 토양수분, 하천수량, 지하수 및 저수지 수위 등과 같은 수문학적 시스템에 전이되는 시간이 소요되기 때문이다. 따라서, 가뭄 피해를 경감하기 위해 지하수위 변동성을 이용하여 지하수 함양량을 추정함으로써 효율적인 수자원 관리의 필요성이 증대되고 있다. 지하수위는 농촌 지하수 개발, 가뭄 및 홍수 예측 등 다양한 분야에 활용되며, 강수량에 의한 변화가 지표수에 비해 느리게 나타나고 토양을 통과하는 특성으로 인해 단기 및 장기간의 변화 경향이 나타난다. 미국 지질조사국 (United States Geological Survey)에서는 지하수위를 월 단위로 보통 이하 (Below-normal), 보통 (Normal), 보통 이상 (Above-normal) 3단계로 구분하여 분포도를 작성하고 전체 관측기간 중 25% 이상에서 보통 이하 (Below-normal)로 나타나면 가뭄으로 판단한다. 우리나라의 경우 지형, 유역을 고려한 지하수 수위 및 수질 현황과 변동성을 파악하기 위하여 전국 지하수위 관측망 688개소를 설치하고 운영 중에 있다. 또한, 농촌진흥청에서는 전국 농업기상대와 연계하여 토양수분관측망 (soil moisture monitoring network)을 구축하였으며, 표토 10 cm에 토양수분센서를 전국 168 지점에 설치하여 운영하고 있다. 본 연구에서는 강수량을 기반으로 산정한 표준강수지수 (Standardized Precipitation Index, SPI)와 지하수위를 기반으로 산정한 표준지하수위지수 (Standardized Groundwater Level Index, SGI), 토양수분관측망의 토양수분의 상관 분석을 수행하고자 한다. 밭작물 가뭄의 중요 요소인 토양수분 함량은 강수에 즉각적으로 반응하는 반면 지표수 및 지하수는 상대적으로 장기간의 강수에 영향을 받기 때문에, 본 연구의 결과는 향후 밭작물 지역의 가뭄 취약성을 관리하는 지표로 활용이 가능할 것으로 사료된다.
Keum Ki Chang;Park Hee Chul;Seong Jinsil;Chang Sei Kyoung;Han Kwang Hyub;Chon Chae Yoon;Moon Young Myoung;Kim Gwi Eon;Suh Chang Ok
Radiation Oncology Journal
/
v.20
no.2
/
pp.123-129
/
2002
Purpose : The purpose of this study 띤as to determine the potential role of three-dimensional conformal radiotherapy (3D-CRT) in the treatment of primary unresectable hepatocellular carcinoma. The preliminary results on the efficacy and the toxicity of 3D-CRT are reported. Materials and Methods : Seventeen patients were enrolled in this study, which was conducted prospectively from January 1995 to June 1997. The exclusion criteria included the presence of extrahepatic metastasis, liver cirrhosis of Child-Pugh classification C, tumors occupying more than two thirds of the entire liver, and a performance status of more than 3 on the ECOG scale. Two patients were treated with radiotherapy only while the remaining 15 were treated with combined transcatheter arterial chemoembolization. Radiotherapy was given to the field including the tumor plus a 1.5 cm margin using a 3D-CRT technique. The radiation dose ranged from $36\~60\;Gy$ (median; 59.4 Gy). Tumor response was based on a radiological examination such as the CT scan, MR imaging, and hepatic artery angiography at $4\~8$ weeks following the completion of treatment. The acute and subacute toxicities were monitored. Results : An objective response was observed in 11 out of 17 patients, giving a response rate of $64.7\%$. The actuarial survival rate at 2 years was $21.2\%$ from the start of radiotherapy (median survival; 19 months). Six patients developed a distant metastasis consisting of a lung metastasis in 5 patients and bone metastasis in one. The complications related to 30-CRT were gastro-duodenitis $(\geq\;grade\;2)$ in 2 patients. There were no treatment related deaths and radiation induced hepatitis. Conclusion : The preliminary results show that 3D-CRT is a reliable and effective treatment modality for primary unresectable hepatocellular carcinoma compared to other conventional modalities. Further studies to evaluate the definitive role of the 3D-CRT technique in the treatment of primary unresectable hepatocellular carcinoma are needed.
YOUNG HO KIM;NAKYOUNG IM;MIN WOO KIM;JAE HEE JEONG;EUN SEO JEONG
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
/
v.28
no.4
/
pp.133-142
/
2023
In this paper, we built a data-driven artificial intelligence model using RNN-LSTM (Recurrent Neural Networks-Long Short-Term Memory) to predict the Lorenz system, and examined the possibility of whether this model can replace chaotic dynamic models. We confirmed that the data-driven model reflects the chaotic nature of the Lorenz system, where a small error in the initial conditions produces fundamentally different results, and the system moves around two stable poles, repeating the transition process, the characteristic of "deterministic non-periodic flow", and simulates the bifurcation phenomenon. We also demonstrated the advantage of adjusting integration time intervals to reduce computational resources in data-driven models. Thus, we anticipate expanding the applicability of data-driven artificial intelligence models through future research on refining data-driven models and data assimilation techniques for data-driven models.
Kim, Sehee;Yun, Juyeol;Kang, Minseok;Chun, Junghwa;Kim, Joon
Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
/
2013.11a
/
pp.26-27
/
2013
산림생태계의 에너지, 물질, 정보의 교환 과정과 그 변화를 이해하려면 먼저 생태계의 구조와 기능이 어떻게 상호작용하는지를 이해해야 한다. 생태계의 기능은 한, 두 가지의 특징에 의해서만 이루어지는 것이 아니다. 그렇기 때문에 그 기능을 파악하고 적절히 이용하거나 대응하기 위해서는 한 생태계와 주변 환경 전체를 바라볼 수 있는 시스템 사고가 필요하다. 이에 우리는 생태계의 '구조'를 파악함으로써 생태계의 '상태'를 이해하고자 한다. 본 연구에서는 Ruddell and Kumar (2009)의 접근법을 따라, 어떻게 한 생태계의 상태를 파악할 수 있는가라는 질문을 광릉활엽수림에 적용하여 답하고자 한다. 즉, 우리는 산림생태계가 열린 복잡계라고 가정하고, 생태계 내에서 다양한 프로세스들 간의 시시각각 변하는 네트워크의 구조가 각 시점의 시스템의 상태를 나타내는 지표가 될 수 있다고 가정하였다. 이 연구에서는 그 구조적 특징을 정량화하여 나타내는데 초점을 맞추었다. 각각의 프로세스를 대표하는 상태 변수들 간의 정보 흐름의 양과 방향, 시간 규모를 계산해냄으로써 네트워크 구조를 파악하고자 하였다. 온대 산악지형 활엽수림인 GDK의 2008년 순생태계교환량(NEE), 총일차생산량(GPP), 생태계호흡량(RE), 현열플럭스(H), 잠열플럭스(LE), 하향단파복사(Rg), 강수량(Precipitation), 기압(Pressure), 기온(T), 포차(VPD)의 시계열 자료를 월별로 나누어 최장 18 시간 규모의 정보 흐름을 계산하였다. 정보 흐름의 구조를 파악하기 위하여 변수들 간의 전이엔트로피(Transfer entropy)와 상호정보(Mutual Information)를 계산하는 방법을 사용하였다. 또한 시계열 자료를 이용함으로써 변수들 간에 정보가 전달되는 시간 규모의 특성을 파악할 수 있었다. 최종적으로, 계산한 정보 흐름을 시각화하여 프로세스 네트워크 구조를 나타내었다. 결과는 월별로 생태계의 정보 흐름의 종류, 방향과 시간 규모, 그에 따른 프로세스 간 상호 작용의 특징 등을 보여준다. 이를 통해 계절적 환경 변화에 따라 시스템의 네트워크 구조와 상태가 어떻게 변화하는지 이해할 수 있을 것이다. 이 연구는 추후 우리 연구실에서 생산한 8 년 자료에 적용함으로써 다양한 날씨 및 기후변화와 환경 변화에 따라 생태계의 구조와 상태가 어떻게 변화하는지 연구하는 시작점이 될 것이다. 이 접근법은 단위나 차원에 무관하게 다양한 종류의 자료에 적용할 수 있는 반면에, 일관성 있게 정의된 시스템의 상태 및 그 상태를 구성하는 주요 하부 시스템들의 네트워크 상태를 이해하는데 이용될 수 있다. 본 연구는 비평형 열역학과 복잡계의 관점에서 바라 본 시스템 사고를 적용하려 하는 여러 연구 분야에 새로운 도전을 촉발할 좋은 선행연구가 될 것이라 기대된다.
With the explosive growth in the volume of information, Internet users are experiencing considerable difficulties in obtaining necessary information online. Against this backdrop, ever-greater importance is being placed on a recommender system that provides information catered to user preferences and tastes in an attempt to address issues associated with information overload. To this end, a number of techniques have been proposed, including content-based filtering (CBF), demographic filtering (DF) and collaborative filtering (CF). Among them, CBF and DF require external information and thus cannot be applied to a variety of domains. CF, on the other hand, is widely used since it is relatively free from the domain constraint. The CF technique is broadly classified into memory-based CF, model-based CF and hybrid CF. Model-based CF addresses the drawbacks of CF by considering the Bayesian model, clustering model or dependency network model. This filtering technique not only improves the sparsity and scalability issues but also boosts predictive performance. However, it involves expensive model-building and results in a tradeoff between performance and scalability. Such tradeoff is attributed to reduced coverage, which is a type of sparsity issues. In addition, expensive model-building may lead to performance instability since changes in the domain environment cannot be immediately incorporated into the model due to high costs involved. Cumulative changes in the domain environment that have failed to be reflected eventually undermine system performance. This study incorporates the Markov model of transition probabilities and the concept of fuzzy clustering with CBCF to propose predictive clustering-based CF (PCCF) that solves the issues of reduced coverage and of unstable performance. The method improves performance instability by tracking the changes in user preferences and bridging the gap between the static model and dynamic users. Furthermore, the issue of reduced coverage also improves by expanding the coverage based on transition probabilities and clustering probabilities. The proposed method consists of four processes. First, user preferences are normalized in preference clustering. Second, changes in user preferences are detected from review score entries during preference transition detection. Third, user propensities are normalized using patterns of changes (propensities) in user preferences in propensity clustering. Lastly, the preference prediction model is developed to predict user preferences for items during preference prediction. The proposed method has been validated by testing the robustness of performance instability and scalability-performance tradeoff. The initial test compared and analyzed the performance of individual recommender systems each enabled by IBCF, CBCF, ICFEC and PCCF under an environment where data sparsity had been minimized. The following test adjusted the optimal number of clusters in CBCF, ICFEC and PCCF for a comparative analysis of subsequent changes in the system performance. The test results revealed that the suggested method produced insignificant improvement in performance in comparison with the existing techniques. In addition, it failed to achieve significant improvement in the standard deviation that indicates the degree of data fluctuation. Notwithstanding, it resulted in marked improvement over the existing techniques in terms of range that indicates the level of performance fluctuation. The level of performance fluctuation before and after the model generation improved by 51.31% in the initial test. Then in the following test, there has been 36.05% improvement in the level of performance fluctuation driven by the changes in the number of clusters. This signifies that the proposed method, despite the slight performance improvement, clearly offers better performance stability compared to the existing techniques. Further research on this study will be directed toward enhancing the recommendation performance that failed to demonstrate significant improvement over the existing techniques. The future research will consider the introduction of a high-dimensional parameter-free clustering algorithm or deep learning-based model in order to improve performance in recommendations.
Fama asserted that in an efficient market, we can't make a trading rule that consistently outperforms the average stock market returns. This study aims to suggest a machine learning algorithm to improve the trading performance of an intraday short volatility strategy applying asymmetric volatility spillover effect, and analyze its trading performance improvement. Generally stock market volatility has a negative relation with stock market return and the Korean stock market volatility is influenced by the US stock market volatility. This volatility spillover effect is asymmetric. The asymmetric volatility spillover effect refers to the phenomenon that the US stock market volatility up and down differently influence the next day's volatility of the Korean stock market. We collected the S&P 500 index, VIX, KOSPI 200 index, and V-KOSPI 200 from 2008 to 2018. We found the negative relation between the S&P 500 and VIX, and the KOSPI 200 and V-KOSPI 200. We also documented the strong volatility spillover effect from the VIX to the V-KOSPI 200. Interestingly, the asymmetric volatility spillover was also found. Whereas the VIX up is fully reflected in the opening volatility of the V-KOSPI 200, the VIX down influences partially in the opening volatility and its influence lasts to the Korean market close. If the stock market is efficient, there is no reason why there exists the asymmetric volatility spillover effect. It is a counter example of the efficient market hypothesis. To utilize this type of anomalous volatility spillover pattern, we analyzed the intraday volatility selling strategy. This strategy sells short the Korean volatility market in the morning after the US stock market volatility closes down and takes no position in the volatility market after the VIX closes up. It produced profit every year between 2008 and 2018 and the percent profitable is 68%. The trading performance showed the higher average annual return of 129% relative to the benchmark average annual return of 33%. The maximum draw down, MDD, is -41%, which is lower than that of benchmark -101%. The Sharpe ratio 0.32 of SVS strategy is much greater than the Sharpe ratio 0.08 of the Benchmark strategy. The Sharpe ratio simultaneously considers return and risk and is calculated as return divided by risk. Therefore, high Sharpe ratio means high performance when comparing different strategies with different risk and return structure. Real world trading gives rise to the trading costs including brokerage cost and slippage cost. When the trading cost is considered, the performance difference between 76% and -10% average annual returns becomes clear. To improve the performance of the suggested volatility trading strategy, we used the well-known SVM algorithm. Input variables include the VIX close to close return at day t-1, the VIX open to close return at day t-1, the VK open return at day t, and output is the up and down classification of the VK open to close return at day t. The training period is from 2008 to 2014 and the testing period is from 2015 to 2018. The kernel functions are linear function, radial basis function, and polynomial function. We suggested the modified-short volatility strategy that sells the VK in the morning when the SVM output is Down and takes no position when the SVM output is Up. The trading performance was remarkably improved. The 5-year testing period trading results of the m-SVS strategy showed very high profit and low risk relative to the benchmark SVS strategy. The annual return of the m-SVS strategy is 123% and it is higher than that of SVS strategy. The risk factor, MDD, was also significantly improved from -41% to -29%.
In this paper, we propose a novel technique that generate a new song with given example songs. Our system use k-th order Markov chain of which each state represents notes in a measure. Because we have to consider very high-dimensional space if we use notes in a measure as a state of Markov chain directly, we exploit a hierarchical clustering technique for given example songs to use each cluster as a state. Each given examples can be represented as sequences of cluster ID, and we use them for training data of the Markov chain. The resulting Markov chain effectively gives new song similar to given examples.
The IPv6 was suggested as an ultimate solution of problems that IPv4 protocol maintains limitations to apply to new technology of data service and the lack of IPv4 address space. So it is expected to transfer IPv4 to IPv6 gradually. In the Ipv6 environment, it is easier to apply security policies and transmits a secure packet applied the security policies, with the content in the Header itself. By this reason, this paper describes about the implementation of DHCPv6 server to perform a connection of IPv6 network and IPv4 network, and the application of secure packet with the security policies for clients. Further, it performs the process of the massages inside the DHCPv6 server to be used in the IPv6 environment in the future.
Hydration of nitriles in the environmentally benign neutral conditions is the most economical and attractive way to produce amides. Substantial research works have been carried out to apply the solid metal oxides and transition metal supported catalytic systems to promote the hydration of nitriles. The most significant feature of these catalysts is the applicability to a wide range of substrates including aromatic, alicyclic, hetero-atomic, and aliphatic nitriles. These catalysts are also characterized by the easy isolation from the reaction mixture and the reusability while maintaining the high catalytic activity. This review accounts over the detailed survey of the metal oxide and solid supported metal catalysts for preparing amides from the hydration of nitriles.
Seo, Hee-Won;Kim, Sun-Young;Shin, Sang-Su;Kim, Tae-Min;Lee, Young-Mok;Lee, Bo-Ram;Kim, Tae-Wan;Lim, Jeong-Mook;Han, Jae-Yong
Proceedings of the Korea Society of Poultry Science Conference
/
2006.11a
/
pp.80-81
/
2006
닭의 유전자 지도가 밝혀지고 그와 관련한 생물학적 연구들이 활발히 이루어지면서 닭을 생체 반응기나 질병 모델 동물로 이용하기 위한 연구가 많이 진행되고 있다. 이 중 닭을 생체 반응기로 이용하기 위해서는 많은 양의 단백질을 생산하는 난관에 대한 연구가 필수적이다. In vivo와 in vitro에서 난관 특이적 프로모터에 의한 외래 유전자의 발현에 대한 연구를 하였고 유전자를 전이하는 방법으로는 렌티 바이러스 시스템을 이용하였으며, 프로모터는 난관 특이적 프로모터인 오브알부민 프로모터 (5‘ 조절 부분의 1.4kb)와 RSV 프로모터를 이용하였다. 리포터 유전자로는 형광발현 단백질 (enhanced green fluorescence protein, EGFP)을 이용해서 마우스 배아 섬유아세포, 닭 배아 섬유아세포, 난관 상피 세포에서 발현을 유도해서 조직 특이적 발현 여부를 확인하였다. 그 결과 RSV 프로모터는 모든 세포에서 발현하였으나, 오브알부민 프로모터에 의한 리포터 유전자의 발현은 난관 상피 세포에서는 특이적으로 발현하였다. 이와 같은 연구는 산란계를 이용해서 난관으로부터 효율적인 생리 활성 물질을 생산하기 위한 가능성을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.