• Title/Summary/Keyword: 전염병 예측

Search Result 54, Processing Time 0.024 seconds

전염병정보화사업의 현황과 발전 방향

  • Lee Jong-Gu
    • 대한예방의학회:학술대회논문집
    • /
    • 2001.04a
    • /
    • pp.39-49
    • /
    • 2001
  • 전염병 정보화사업은 1995년 콜레라의 집단 발병을 계기로 1996년부터 추진되었다. 교통의 발달과 국제교류의 증가는 전염병의 전파와 확산속도가 빨라져 국민건강을 위협하고 있으며 기존의 수작업만으로 정보수집 및 효율적인 전염병관리가 어려워 체계적이고 효율적인 전염병관리를 위하여 국가적 D/B 구축, 전염병관리의 의사결정지원자료 축적의 필요성 제기되었으나 독자적인 망 구축에는 막대한 예산이 들고 망의 운영과 유지관리를 위한 예산과 조직의 한계가 있는 상황에서 콜레라 발생을 계기로 보건복지부 방역과, 국립보건원, 국립서울 검역소, 경기도 6개 보건소 및 경기 및 인천 보건환경연구원을 실험적으로 연계하여 전염병 관리에 필요한 정보의 내용과 흐름, 자료 관리를 위한 기관별, 자치단체별 역할과 기능 등에 관한 개념 정립 둥 전산개발과 함께 제도정비 방안 등이 동시에 수행되었다. 이러한 실험과 연구 결과를 토대로 1998년부터 인터넷을 활용한 전염병의 신고 보고, 전염병관련 자료의 D/B를 통한 전염병의 발생 예측, GIS 등 전염병에 관한 모든 정보를 제공할 수 있는 portal site 구축을 위한 2단계 정보화사업이 정보통신부 지원 하에 시도되었다. 약 2년간의 작업 결과 전염병관리의 전산화 가능성이 확인된 후 전염병예방법을 개정하여 전산 보고의 제도적 틀을 만들고 2000년 8월부터 법정전염병은 전산 보고가 이루어 지고 있다. 일방적이 보고이외 전염병관리의 쌍방화를 위하여 각종 지령/정보의 전파, 각종 통계, 지침, 교육자료, 전염병관련 논문 등을 제공하고 있으며, 상담, 민원접수는 전염병 관련 정보의 전문화와 함께 국민과 호흡할 수 있는 시스템으로 운영될 수 있도록 설계하였다. 그러나 현재 사용하고 있는 WEB EDI가 가진 속도 문제, 응용프로그램의 문제로 신고 보고를 C/S 버전으로 전환하여 사용자의 편리성을 증진하고 있다. 또한 예방접종자료의 전산화를 통한 이상반응 관리, 접종주기 관리, 예방접종으로 관리할 수. 있는 전염병관리(Vaccine preventable disease), 학교에서 발생하는 전염병의 감시 등 전염병 포탈 사이트에 걸맞게 정보 내용을 한층 확대하고 있고 일선의료기관도 활용할 수 있는 시스템으로 발전시키고 있다. 이를 위하여 정보관리과도 신설하였다. 그러나 전염병관리의 전산화는 궁극적으로 전염병 자료의 지역화와 그를 통한 전염병관리의 분권화 및 지방자치화를 이루고자 하는 것이다. 기술적인 측면에서 전산망은 쉽게 만들 수 있으나 전염병관리의 개선과 그 정착은 1-2년간의 전산프로그램개발 작업만으로 달성되기는 어려우며 범국가적인 노력과 더불어 일선보건요원의 교육과 훈련 및 보건소장 등 보건관리자의 전산마인드 개발 등의 작업도 매우 중요할 것으로 사료된다.

  • PDF

Prediction of infectious diseases using multiple web data and LSTM (다중 웹 데이터와 LSTM을 사용한 전염병 예측)

  • Kim, Yeongha;Kim, Inhwan;Jang, Beakcheol
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.139-148
    • /
    • 2020
  • Infectious diseases have long plagued mankind, and predicting and preventing them has been a big challenge for mankind. For this reasen, various studies have been conducted so far to predict infectious diseases. Most of the early studies relied on epidemiological data from the Centers for Disease Control and Prevention (CDC), and the problem was that the data provided by the CDC was updated only once a week, making it difficult to predict the number of real-time disease outbreaks. However, with the emergence of various Internet media due to the recent development of IT technology, studies have been conducted to predict the occurrence of infectious diseases through web data, and most of the studies we have researched have been using single Web data to predict diseases. However, disease forecasting through a single Web data has the disadvantage of having difficulty collecting large amounts of learning data and making accurate predictions through models for recent outbreaks such as "COVID-19". Thus, we would like to demonstrate through experiments that models that use multiple Web data to predict the occurrence of infectious diseases through LSTM models are more accurate than those that use single Web data and suggest models suitable for predicting infectious diseases. In this experiment, we predicted the occurrence of "Malaria" and "Epidemic-parotitis" using a single web data model and the model we propose. A total of 104 weeks of NEWS, SNS, and search query data were collected, of which 75 weeks were used as learning data and 29 weeks were used as verification data. In the experiment we predicted verification data using our proposed model and single web data, Pearson correlation coefficient for the predicted results of our proposed model showed the highest similarity at 0.94, 0.86, and RMSE was also the lowest at 0.19, 0.07.

Development of Predicting Model for Livestock Infectious Disease Spread Using Movement Data of Livestock Transport Vehicle (가축관련 운송차량 통행 데이터를 이용한 가축전염병 확산 예측모형 개발)

  • Kang, Woong;Hong, Jungyeol;Jeong, Heehyeon;Park, Dongjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.78-95
    • /
    • 2022
  • The result of previous studies and epidemiological invstigations for infectious diseases epidemic in livestock have shown that trips made by livestock-related vehicles are the main cause of the spread of these epidemics. In this study, the OD traffic volume of livestock freight vehicle during the week in each zone was calculated using livestock facility visit history data and digital tachograph data. Based on this, a model for predicting the spread of infectious diseases in livestock was developed. This model was trained using zonal records of foot-and-mouth disease in Gyeonggi-do for one week in January and February 2015 and in positive, it was succesful in predicting the outcome in all out of a total 13 actual infected samples for test.

Analyzing the Impact of Pandemics on Air Passenger and Cargo Demands in South Korea

  • Jungtae Song;Irena Yosephine;Sungchan Jun;Chulung Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.1
    • /
    • pp.99-106
    • /
    • 2023
  • 글로벌 팬데믹 사태는 항공 수요에 부정적인 영향을 끼치는 요소 중 하나다. 글로벌 팬데믹으로 인해 한국은 2020년과 2021년의 항공 승객 수가 2019년 대비 각각 68.1%와 47% 감소했다. 본 연구는 지난 20여년 동안 발생한 4대 팬데믹 특성을 분석, 전염병의 영향을 연구하는 것을 목표로 한다. SARS, H1N1, MERS 및 COVID-19의 발생기간 동안 한국의 항공 여객 및 화물 수요에 대한 실증 데이터를 활용하여 영향력을 분석한다. 또한 머신러닝 회귀 모델을 구축하여 향후 발생할 다른 전염병 대한 항공 수요를 예측하고자 한다. 연구 결과, 전염병이 항공 운항편수와 승객에 부정적인 영향을 미친다는 사실을 발견하였다. 반면화물 수송에는 긍정적인 영향을 미친다는 분석 결과를 도출하였다. 본 분석에 활용되는 회귀 모델은 팬데믹 기간 동안 항공수요를 예측하는 데 평균 86.8%의 기능을 보였다. 또한 본 연구는 특정 국가의 팬데믹 상황보다 전 세계적인 팬데믹 상황이 항공 운송 수요에 더 많은 영향을 미친다는 것을 보여준다.

Prediction of COVID-19 Confirmed Cases in Consideration of Meteorological Factors (기상 요인을 고려한 일일 COVID-19 확진자 예측)

  • Choo, Kyung Su;Jeong, Dam;Lee, So Hyun;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.68-68
    • /
    • 2022
  • 코로나바이러스는(COVID-19)는 2019년 12일 중국 후베이성 우한시에서 시작된 코로나바이러스감염증으로 2020년 1월부터 전 세계로 퍼져, 일부 국가 및 지역을 제외한 대부분의 나라와 모든 대륙으로 확산되었다. 이에 WHO는 범 유행전염병(Pandemic)을 선언하였다. 2022년 3월 18일 현재 국내 누적 확진환자 8,657,609명과 11,782명의 사망자를 일으켰고 전 세계적으로도 많은 사상자를 내고 있는 실정이고 사회 및 경제적인 피해로도 계속 확대되고 있다. 많은 감염자와 사망자의수에 대한 예측은 코로나바이러스의 전염병을 예방하고 즉각적 조치를 취할 수 있는데 도움이 될 수 있다. 본 연구에서는 문화적 인자를 제외한 국내에서 연구 사례가 많지 않은 기상 요인을 인자로 포함하여 머신러닝 모델을 통해 확진자를 예측하였다. 그리고 여러 가지 모델을 성능 평가 기법인 Root Mean Square Error(RMSE) 및 Mean Absolute Percentage Error(MAPE)를 통해 성능을 평가하고 비교하여 정확도 높은 모델을 제시하였다.

  • PDF

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.

A transmission distribution estimation for real time Ebola virus disease epidemic model (실시간 에볼라 바이러스 전염병 모형의 전염확률분포추정)

  • Choi, Ilsu;Rhee, Sung-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.161-168
    • /
    • 2015
  • The epidemic is seemed to be extremely difficult for accurate predictions. The new models have been suggested that show quite different results. The basic reproductive number of epidemic for consequent time intervals are estimated based on stochastic processes. In this paper, we proposed a transmission distribution estimation for Ebola virus disease epidemic model. This estimation can be easier to obtain in real time which is useful for informing an appropriate public health response to the outbreak. Finally, we implement our proposed method with data from Guinea Ebola disease outbreak.

Virus communicable disease cpidemic forecasting search using KDD and DataMining (KDD와 데이터마이닝을 이용한 바이러스성전염병 유행예측조사)

  • Yun, JongChan;Youn, SungDae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.47-50
    • /
    • 2004
  • 본 논문은 대량의 데이터를 처리하는 전염병에 관한 역학조사에 대한 과정을 KDD(Knowledge Discovery in Database)와 데이터마이닝 기법을 이용해서 의료 전문인들의 지식을 데이터베이스화하여 데이터 선정, 정제, 보강, 예측과 빠른 데이터 검출을 하도록 하였다. 그리고 각 바이러스의 동향은 데이터마이닝을 활용하므로 일부분만의 데이터를 산출하지 않고 전체적인 동향을 산출, 예측하도록 한다.

  • PDF

Proposal of a Monitoring System to Determine the Possibility of Contact with Confirmed Infectious Diseases Using K-means Clustering Algorithm and Deep Learning Based Crowd Counting (K-평균 군집화 알고리즘 및 딥러닝 기반 군중 집계를 이용한 전염병 확진자 접촉 가능성 여부 판단 모니터링 시스템 제안)

  • Lee, Dongsu;ASHIQUZZAMAN, AKM;Kim, Yeonggwang;Sin, Hye-Ju;Kim, Jinsul
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.122-129
    • /
    • 2020
  • The possibility that an asymptotic coronavirus-19 infected person around the world is not aware of his infection and can spread it to people around him is still a very important issue in that the public is not free from anxiety and fear over the spread of the epidemic. In this paper, the K-means clustering algorithm and deep learning-based crowd aggregation were proposed to determine the possibility of contact with confirmed cases of infectious diseases. As a result of 300 iterations of all input learning images, the PSNR value was 21.51, and the final MAE value for the entire data set was 67.984. This means the average absolute error between observations and the average absolute error of fewer than 4,000 people in each CCTV scene, including the calculation of the distance and infection rate from the confirmed patient and the surrounding persons, the net group of potential patient movements, and the prediction of the infection rate.

Investigation of Reportable Communicable Diseases and Parasites in Aquatic Organisms Living in the Estuary of the Han River (한강 하구에 서식하는 수산생물의 법정전염병 및 기생충 감염 조사)

  • Kim, Jin Hui;Song, Jun Young;Lee, Jung-Ho;Hur, Jun Wook;Kwon, Se Ryun;Kwon, Joon Yeong
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.4
    • /
    • pp.306-315
    • /
    • 2019
  • The estuary of the Han River constantly suffers from pollutants and pathogenic microorganisms which could cause serious damage to aquatic organisms living there. Despite of this potential risk, it is hard to find any reliable scientific reports on the status of reportable disease infection to the organisms living in this area. In this study, cyprinid fish and crustaceans in Jeonryu-ri, a region of the Han River estuary, were investigated for the infection by representative reportable communicable diseases(SVC, spring viraemia of carp; KHVD, koi herpesvirus disease; EUS, epizootic ulcerative syndrome; WSD, white spot disease) and parasites. Peripheral fish and primary freshwater fish were observed in Jeonryu-ri with cyprinid caught most frequently. Crustaceans were mostly marine species. No positive bands to any of the reportable diseases were produced in any of the fish and crustacean examined in this study by PCR. No trace of Clonorchis sinensis, a liver fluke potential threat to human health, was detected in any of fish samples. However, many fish were infected by metacecaria of other flukes, and other various parasites such as nematode, cestode, copepod, monosite and acanthocephalan. These results suggest that important aquatic organisms in the Han River estuary is not seriously polluted yet. However, it is important to keep monitoring the diseases since the water quality in this region is constantly changing, and devastating influence of infectious diseases is unpredictable. Further, it is required to expand monitoring area toward upstream and increase the number of fish for examination.