• Title/Summary/Keyword: 전열선

Search Result 41, Processing Time 0.022 seconds

Development of Temperature Control Technology of Root Zone using Multi-line Heating Methods in the Strawberry Hydroponics (다선식 가온방식을 이용한 딸기 수경재배의 배지 온도조절 기술 개발)

  • Kim, Ki-Dong;Ha, Yu-Shin;Lee, Ki-Myung;Park, Dae-Heum;Kwon, Soon-Hong;Choi, Won-Sik;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.189-194
    • /
    • 2010
  • A multi line electric tube consisted of XL pipes contained with 2~4 hot wires and water in it. The specification of one meter length multi-line electric tube was investigated and the proper number in the multi-line electric tube was determined. A multi line electric tube with three hot wires were found to be the most efficient for the media heating control system. Temperature rise of medium in the rice hulls media was faster than that in the perlite media, showed better insulation effect of rice hulls media. Temperature rise of medium with mulching on the top of the bed was faster than without mulching, resulted in the beneficial effect of temperature rise with mulching. The regression model for the rice hulls media with mulching air temperature of $5^{\circ}C$ were a = -0.1458 and b = -0.1088. Using the model, the temperature rise of medium during low temperature season can be predicted for the various media according to the different depths.

Thermal Performance of Wooden Building Envelope by Thermal Conductivity of Structural Members (목조건축물 구조부재의 열전도율에 따른 건물외피의 단열 성능)

  • Kim, Sughwan;Yu, Seulgi;Seo, Jungki;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.515-527
    • /
    • 2013
  • Building energy simulations which are mainly used in Korea have evaluated the building energy performance with the different thermal conductivity of construction materials. In order to evaluate the energy consumption accurately, the difference in thermal conductivity of the wood used in stud for wooden structure was confirmed from the each simulation. In addition, the thermal transmission of building members and the thermal bridge at the conjunction of building members according to thermal conductivity from each simulation programs were researched. The thermal conductivity of pine that has the largest variation among the energy simulations was applied to the thermal properties of studs in wooden structure. The maximum error between the maximum and minimum thermal transmission of roof, wall, and floor slab was $0.023W/m^2{\cdot}K$. Plus, that thermal bridge at Rafter junction on the roof, roof-wall joint, and floor slab-wall joint was $0.025W/m{\cdot}K$. The heat transfer image for changes in temperature and the heat exchange were analyzed by HEAT2 program. The distorted temperature lines were found around the insufficient insulated connection parts. It was predicted that the temperature at the distorted parts in the analyzed image was lower than that of the other portion of the other structures.

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Line Source Method (선형열원법에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Lee, Se-Kyoun;Woo, Joung-Son;Ro, Jeong-Geun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.71-78
    • /
    • 2010
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. The line source method is required by New and Renewable Energy Center of Korea Energy Management Corporation in analyzing data obtained from thermal response tests. Another important factor in designing the ground loop heat exchanger is the borehole thermal resistance($R_b$). There are two methods to evaluate $R_b$ : one is to use a line source method, and the other is to use a shape factor of the borehole. In this study, we demonstrated that the line source method produces better results than the shape factor method in evaluating $R_b$. This is because the borehole thermal resistance evaluated with the line source method characteristically reduces the temperature differences between an actual and a theoretical thermal behaviors of the borehole. Evaluation of $R_b$ requires soil volumetric heat capacity. However, the effect of the soil volumetric heat capacity on the borehole thermal resistance is very small. Therefore, it is possible to use a generally accepted average value of soil volumetric heat capacity($=2MJ/m^3{\cdot}K$) in the analysis. In this work, it is also shown that an acceptable range of the initial ignoring time should be in the range of 8~16hrs. Thus, a mean value of 12 hrs is recommended.

Study on the Thermal Radiation Performance of the Multi-functional Structure Made of the Carbon Fiber Composite Material (탄소섬유 복합재를 이용한 위성용 다기능 구조체의 방열성능 분석)

  • Kim, Taig-Young;Hyun, Bum-Seok;Seo, Young-Bae;Jang, Tae-Seong;Seo, Hyun-Suk;Lee, Jang-Joon;Kim, Won-Seock;Rhee, Ju-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • The design strategy of the multi-functional structure is that the electrical components and the circuits are directly put on their supporting structural panel in which the radiation shields and the thermal control functions are integrated. Applying the multi-functional structure reduces the total mass and size of the space system and makes it possible to lower launch cost. In present study the performance of thermal radiation for six types of multi-functional structure are investigated by the numerical method. The effect of the rib configuration on heat transfer for the multi-functional-structure is not important alone but is meaningful considering with the structural stiffness, difficulty of manufacturing and mass increase. In heat spreading point of view, the thickness of the outer conductive layer is important rather than the rib configuration and the trade-off study with the mass and thickness is required for optimum design.

Integrated Experimental-Numerical Approach to Investigate the Heat Transferring Effect of Carbon Nanotube on the Concrete Slab (실내실험 및 수치해석을 통한 Carbon Nanotube의 콘크리트슬래브 열전달 효과 검증)

  • Kim, Hee Su;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.51-56
    • /
    • 2019
  • This paper presents a method to deice concrete pavement with carbon nanotube(CNT) as an heating material so as to avoid the adverse effects of conventional deicing method such as salt on the structure, function and environment. To this end, laboratory tests integrated with numerical simulations were conducted. In the laboratory tests, the CNT was embedded inside the concrete slab and generated the heat up to the target temperature of $60^{\circ}C$ in the freezer at temperature of $-10^{\circ}C$. Then, the surface temperature was measured to investigate how far the heat transfers on the surface at temperature of above $0^{\circ}C$. Also, three different spacings of 15, 20 and 30cm between CNTs were conducted to determine the maximum allowable spacing of CNT. Along with these experimental tests, heat transferring analysis conducted to validate the test results.

Comparison of Heating Characteristics of Electric Heating Element Heater and Oil Hot Air Heater in Single Span Greenhouses (전기발열체 난방기 및 유류온풍 난방기의 단동온실 난방 특성 비교)

  • Kwon, Jin Kyung;Kim, Seung Hee;Shin, Young An;Lee, Jae Han;Park, Kyeong Sub;Kang, Youn Koo
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.324-332
    • /
    • 2017
  • The comparative experiments were conducted for single span greenhouses where cucumbers were cultivated to analyze the effect of heating between a carbon fiber electric heating element heater and an oil hot air heater in terms of the inside climate, energy consumption and plant growth. In order to analyze the effect of heating capacity, 6, 9, and 16 kW of electric powers were supplied to the electric heating element for same setting temperature of 15?. As a result, as the heating capacity increased, the number of ON-OFF cycles of the electric heating element and the temperature inside the greenhouse increased proportionally. In the comparison of two heaters, it was shown that the temperature and relative humidity distributions of the electric heating element installed greenhouse was much uniform than those of the oil hot air heater installed greenhouse. The heating energy consumptions during the heating period of 79 days were 867L for the oil hot air heater and 8,959 kWh for the electric heating element heater, and the heating costs were 607 and 403 thousand won respectively. In the electric heating element installed greenhouse, the cucumber growth was slightly better and the yield was 4.3% higher than those of the oil hot air heater installed greenhouse, but there were no statically significant difference in the cucumber growth and yield between greenhouses.

일체형 신형원자로의 기계구조 예비개념설계

  • 김지호;김용완;김긍구;김종인;문갑석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.741-746
    • /
    • 1995
  • 일체형원자로는 노심, 증기발생기, 가압기, 펌프 등 1차측 주기기들을 하나의 압력용기 안에 모두 포함하고 있고 또 1차측 냉각재가 원자로 안에서만 순환하므로 기존의 분리 형에 비해 구조특성상 상당히 다른 설계개념이 필요하다. 본 연구에서 개발중에 있는 일체형 열병합원자로에서 채택한 설계개념은, 먼저 증기발생기는 많은 수의 전열관들이 나사선처럼 노심지지원통을 감고 올라가는 일체형 관류식 나선형을 사용하였으며, CEDM은 지진하중과 같은 동적하중에 의한 영향을 최소화하기 위하여 원자로용기 외부로의 돌출부분을 최소화하는 설계개념을 채택하였다. 또한 가압기는 별도의 부품없이 원자로용기 헤드의 빈공간을 활용한 자기가압방식으로 대체하였고 냉각재 펑프는 Canned Motor Pump를 원자로벽에 직접 부착하는 개념을 사용하였다. 본 논문에서는 예비개념설계된 일체형 신형원자로의 기계구조설계상의 특징들을 설명하고 앞으로의 연구방향을 간략히 소개한다.

  • PDF

A study on the anti-freezing of light weight electric traction system testing road (경량전철 시스템 선로 결빙방지에 관한 연구)

  • Woo, Jae-Ho;Han, Kyu-Il;Kim, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2256-2261
    • /
    • 2008
  • The electric snow melting and deicing system by electric heating cable which is adopted in this study is a part of road facilities to keep surface temperature of the road higher than freezing point of water for melting the snow or ice accumulated on it. The electric heating cables are buried under paved road at a certain depth and a certain pitch and operated automatically and manually. Design theory, amount of heating, and installation standard vary according to economic situation, weather condition, and installation place. A main purpose of this study is figuring out the appropriate range of required heat capacity and installation depth and pitches for solving snowdrifts and freezing problems with minimum electric power consumption. This study was performed under the ambient air temperature($-2^{\circ}C$, $-5^{\circ}C$), the pitches of the electric heating cables (200 mm, 300 mm), heating value ($250\;W/m^2$, $300\;W/m^2$, $350\;W/m^2$).

  • PDF

A Study on the Evaluation of Cabin Thermal Environment and Marine Fuels for Fuel Saving in Summer According to the Improvement of Air Conditioning System - The Case of Training Ship SAENURI - (공조시스템 개선에 따른 하절기 선실 온열환경 평가 및 유류절감에 관한 연구 - 실습선 새누리호를 중심으로 -)

  • Han, Seung-Hun;Kim, Hong-Ryel
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.653-662
    • /
    • 2014
  • In this study, Mokpo national maritime university Training ship Centralizes Air Conditioning System was upgraded by installing onboard an Air-cooled Air conditioner. This resulted in the improvement of the performance and operation. This study compared refrigeration performance to former equipment and improving one. And through the actual measurement study about the cabin thermal environment, it will be used as basic data for marine air conditioning design and plan in the future. At same climate condition, when the Centralized Air Conditioning System and an improved air conditioning system operated, cabin temperature was at $24{\sim}28^{\circ}C$, humidity was 55~75 % as comfortable condition, Generator load measurement showed a saving of 48KW in the average load and 8 % in the full load factor. This also resulted in a saving of daily fuel oil consumption(FOC) at around 222 [${\ell}/day$] average. On the other hand, one cadet cabin(Cadet No.21) indicated a higher temperature due to heat transmission of engine room. It found us not to consider installing additional diffuser to reduce the heat transmission.

Flow Characteristics of Wake Flow with Relation to a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan (유량에 따른 축류홴의 익단누설와류 및 후류 특성)

  • Kim Kwang-Yong;Jang Choon-Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.322-329
    • /
    • 2005
  • The flow characteristics in the blade passage and in the wake region of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From axial velocity distributions downstream of the fan rotor, large axial velocity decay near the rotor tip is observed at near stall condition, which results in large blockage compared to that at the design condition. Although the wake flow downstream of the rotor blade is clearly measured at all operating conditions, the trough of the high velocity fluctuation due to Karmann vortex street in the wake flow is mainly observed at a higher flow condition than the design flow rate.