• Title/Summary/Keyword: 전역-국부 해석

Search Result 19, Processing Time 0.036 seconds

A New Global-Local Analysis Using MLS(Moving Least Square Variable-Node Finite Elements (이동최소제곱 다절점 유한요소를 이용한 새로운 전역-국부해석)

  • Lim, Jae-Hyuk;Im, Se-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.293-301
    • /
    • 2007
  • We present a new global-local analysis with the aid of MLS(Moving Least Square) variable-node finite elements which can possess an arbitrary number of nodes on element master domain. It enables us to connect one finite element with a few finite elements without complex remeshing. Compared to other type global-local analysis, it does not require any superimposed mesh or need not solve the equilibrium equation twice. To demonstrate the performance of the proposed scheme, we will show several examples in relation to capturing highly local stress field using global-local analysis.

Study on Hydroelastic Analysis of LNGC Cargo by Global-Local Analysis Technique (전역-국부 해석기법에 의한 LNG 운반선 화물창의 유탄성 해석에 관한 연구)

  • Park, Seong-Woo;Cho, Jin-Rae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.83-92
    • /
    • 2007
  • There are many numerical methods to solve large-scale fluid-structure interaction(FSI) problems. However, these methods require very fine mesh to achieve the reasonable numerical accuracy and stability due to the concentrated and volatile hydrodynamic pressure caused by the liquid sloshing. Consequently, the numerical analysis targeting for the long-period time response with the desired numerical accuracy Is very highly time-consuming. The aim of this paper is to suggest a new method to analyze the hydroelastic behavior of the LNGC containment by using the global-local numerical approach. The reliability of the presented method is firstly examined, and then its efficiency is demonstrated by presenting that the long-period local responses of the LNGC containment are obtained with relatively short CPU time.

Development of Finite Element Domain Decomposition Method Using Local and Mixed Lagrange Multipliers (국부 및 혼합 Lagrange 승수법을 이용한 영역분할 기반 유한요소 구조해석 기법 개발)

  • Kwak, Jun Young;Cho, Hae Seong;Shin, Sang Joon;Bauchau, Olivier A.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.469-476
    • /
    • 2012
  • In this paper, a finite element domain decomposition method using local and mixed Lagrange multipliers for a large scal structural analysis is presented. The proposed algorithms use local and mixed Lagrange multipliers to improve computational efficiency. In the original FETI method, classical Lagrange multiplier technique was used. In the dual-primal FETI method, the interface nodes are used at the corner nodes of each sub-domain. On the other hand, the proposed FETI-local analysis adopts localized Lagrange multipliers and the proposed FETI-mixed analysis uses both global and local Lagrange multipliers. The numerical analysis results by the proposed algorithms are compared with those obtained by dual-primal FETI method.

Study on the Local Refinement in Spline Finite Element Method by Using Hierarchical B-spline (계층적 B-스플라인을 이용한 스플라인 유한요소법의 국부 세분화에 관한 연구)

  • Hah, Zoo-Hwan;Kim, Hyun-Jung;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1007-1013
    • /
    • 2010
  • A new local refinement scheme for spline finite element method has been proposed; this scheme involves the use of hierarchical B-spline. NURBS has been widely used in CAD; however, the local refinement of NURBS is difficult due to its tensor-product property. In this study, we attempted to use hierarchical B-splines as local refinement strategy in spline FEM. The regions of high gradients are overlapped by hierarchically-created local meshes. Knot vectors and control points in local meshes are extracted from global meshes, and they are refined using specific schemes. Proper compatibility conditions are imposed between global and local meshes. The effectiveness of the proposed method is verified on the basis of numerical results. Further, it is shown that by using a proposed local refinement scheme, the accuracy of the solution can be improved and it could be higher than that of the solution of a conventional spline FEM with relatively lower degrees of freedom.

Analysis of Wrinkling for Creased Thin Membrane (접힌 자국이 있는 멤브레인의 주름 거동 해석)

  • Woo, Kyeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.851-858
    • /
    • 2008
  • In this paper, the wrinkling behavior of vertically creased corner-loaded square membranes was studied using geometrically nonlinear post-buckling analysis. The membranes were modeled using shell elements, and the meshes were seeded with semi-random geometrical imperfection to instigate the buckling deformation. A pristine and creased membranes with various initial deployment angles were considered in the analyses and the results were compared. Results showed that local wrinkles initiated near the corner where the higher load was applied, which grew to form a single diagonal global wrinkle as the load ratio increased. It was also found that the local wrinkle initiation and the global wrinkle formation were significantly dependent on the initial deployment angles.

Prediction of acoustic radiation efficiency for trapezoidal corrugated plates (사다리꼴 주름평판의 음향방사효율 해석)

  • Jungsoo Ryue;Seungho Jang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.2
    • /
    • pp.83-93
    • /
    • 2023
  • Trapezoidal corrugated plates are often treated as orthotropic plates to simplify the modelling of the corrugation. However, this simplification is not valid at high frequencies in which the localized vibration within the parts of corrugation takes place. In this study, the vibrational and acoustical characteristics of corrugated plates are investigated up to high frequencies by means of the wavenumber domain numerical approach. Based on the findings from this numerical analysis, an approximate method to predict vibro-acoustic characteristics of corrugated plates is proposed. This approximate model consists of four equivalent plates which can represent global and local behaviours of corrugated plates. The radiation efficiency of corrugated plates is predicted from the approximate model and validated through the comparison with those of the numerical method.

Optimization of Komsat II Structure Using Genetic Algorithm in Parallel Computation Environment (유전자 알고리즘를 사용한 분산 처리에 의한 다목적 위성 구조체의 최적화)

  • 윤진환;임종빈;박정선
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.11a
    • /
    • pp.3-7
    • /
    • 2002
  • 컴퓨터 네트워킹 기술의 발달에 힘입어 분산처리를 이용한 기법이 복잡한 구조물의 최적설계에 널리 사용되고 있다. 최적설계시 구조물이 복잡하고 설계 변수가 많아질수록 설계 변수간의 교호작용이 복잡해지고 국부최적해가 많아지는 특성이 있다. 최근의 최적 설계는 이러한 문제점을 해결하고자 다양한 전역 최적화 기법을 도입하여 적용하고 있다. 본 연구에서는 진화이론을 바탕으로 한 유전자 알고리즘과 실험계획법을 바탕으로 한 반응표면법에 분산처리 기법을 도입하여 인공위성 추진 모듈의 최적화에 적용시켰다. 그 결과 유전자 알고리즘이 조금 더 좋은 최적값을 보였으며 해석시간은 반응표면법을 적용 시켰을 경우가 훨씬 짧았다. 병렬처리 기법을 이용한 위성구조체의 최적설계에 있어 유전자 알고리즘은 해의 전역성에서 반응표면법은 시간의 효율성에서 각각 장점을 보였다.

  • PDF

A Study on the Effective Interpolation Methods to the Fluid-Structure Interaction Analysis for Large-Scale Structure (거대 구조물의 유체-구조 연계 해석을 위한 효과적인 보간기법에 대한 연구)

  • Lee, Ki-Du;Lee, Young-Shin;Kim, Dong-Soo;Lee, Dae-Yearl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.433-441
    • /
    • 2009
  • Generally, the events in nature have multi-disciplinary characteristics. To solve this problems, these days loosely coupled methods are widely applied because of advantage of solvers which are already developed and well proved. Those solvers use different mesh system, so transformation and mapping of data are vital in the field of fluid-structure interaction(FSI). In this paper, the interpolation of deformation which is used globally and compactly supported radial basis functions(RBF), and mapping of force which use principle of virtual work are examined for computing time and accuracy to compare ability with simple 3-D problem. As the results, interpolation scheme of compactly supported radial basis functions are useful to interpolation and mapping for large-scale airplane in FSI with a k-dimensional tree(kd-tree) which is a space-partitioning data structure for organizing points in a k-dimensional space.

Thermal Deformation Measurement of Notched Structure Using Global-local Multi-DIC System (전역-국부 다중 DIC 시스템을 이용한 노치 구조물의 열변형 계측)

  • Xin, Ruihai;Doan, Nguyen Vu;Goo, Nam Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.617-626
    • /
    • 2021
  • During supersonic flight of vehicles, the thermal behavior of structures under high-temperature environment is important for thermal-structural design. In this study, full-field thermal deformation and stress concentration of the notched structure was performed using global-local multi-digital image correlation (multi-DIC) systems. This techniques were developed and implemented by multi-DIC systems consists of 2D DIC system and 3D DIC system. The specimen was heated in a heating chamber to achieve the thermal expansion behavior. Then the images of structure's deformation and stress concentration at various temperature were recorded and analyzed by multi-DIC system. Afterward, full-field thermal deformation of the notched structure was determined with DIC technique and stress concentration at the notched structure was calculated by further processing. Finite element analysis of the notched structure is performed in ABAQUSTM and the results of the experiments show good agreement with those obtained from simulation. The results achieved in this study show the efficiency of the muilti-DIC method in thermal deformation as well as stress concentration of notched structure.