• Title/Summary/Keyword: 전신 진동

Search Result 98, Processing Time 0.028 seconds

Mathematical Model Development of Whole-body Vertical Vibration, Using a Simulated Annealing Method (Simulated Annealing 기법을 이용한 인체 수직 전신 진동 모델의 파라미터 선정)

  • Choi, Jun-Hee;Kim, Young-Eun;Baek, Kwang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.381-386
    • /
    • 2000
  • Simple spring-damper-mass models have been widely used to understand whole-body vertical biodynamic response characteristics of the seated vehicle driver. However, most previous models have not considered about the non-rigid masses(wobbling masses). A simple mechanical model of seated human body developed in this study included the torso represented by a rigid and a wobbling mass. Within the 0.5-20Hz frequency range and for excitation amplitudes maintained below $5ms^{-2}$, this 4-degree-of-freedom driver model is proposed to satisfy the measured vertical vibration response characteristics defined from a synthesis of published data for subjects seated erect without backrest support. The parameters are identified by using the combinatorial optimization technique, simulated annealing method. The model response was found to be provided a closer agreement with the response characteristics than previously published models.

  • PDF

A Study ef Biomechanical Response in Human Body during Whole-Body Vibration through Musculoskeletal Model Development (전신 진동운동기 사용시 인체에 대한 생체역학적 특성 분석을 위한 가상 골격계 모델의 개발 및 검증)

  • Choi, Hyun-Ho;Lim, Do-Hyung;Hwang, Seon-Hong;Kim, Young-Ho;Kim, Han-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.155-163
    • /
    • 2008
  • This study investigated biomechanical response through the 3-dimensional virtual skeletal model developed and validated. Ten male subjects in standing posture were exposed to whole body vibrations and measured acceleration on anatomical of interest (head, $7^{th}$ cervical, $10^{th}$ thoracic, $4^{th}$ lumbar, knee joint and bottom of the vibrator). Three dimensional virtual skeletal model and vibration machine were created by using BRG LifeMOD and MSC.ADAMS. The results of forward dynamic analysis were compared with results of experiment. The results showed that the accuracy of developed model was $73.2{\pm}19.2%$ for all conditions.

investigation on Human Effects of Vibration and Noise Exposed on Human: I. Human Vibration (인체 진동소음의 인체영향에 대한 국내외 기술조사 : 인체 진동)

  • 정완섭;권휴상
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.691-694
    • /
    • 2001
  • The recent national contract (Ecotechnopia 21) supported by the ministry of environment puts much significance on new issues for the assessment of human effects arising from vibration and noise exposed to human. This paper focuses only on hand-arm vibration since it has been a major problem in protecting vibration exposure to human. To set up a systematic way of assessing adverse effects of hand-arm vibration, surveys were made on recent international standards and researches related to hand-arm vibration. The measurement and evaluation methods of hand-arm transmitted vibration, the relationship between vibration exposure and effects on health, and the assessment methods of nerve dysfunctions are addressed in this paper. Those methods are linked into a logical way of assessing effects of hand-arm vibration on human. Finally, the current activities and achievements in this work are briefly summarised.

  • PDF

Effect of Muscle Activation Change of Lower Limb According to Whole Body Vibration During Different Squat Exercises (다양한 스쿼트 자세 수행 시 전신진동자극이 하지 근 활성도에 미치는 영향)

  • Seo, S.B.;Kang, S.R.;Yu, C.H.;Min, J.Y.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • The objective of this study was to assess leg muscle activities during whole body vibration (WBV) training with various squat position exercises. Subjects performed four different squat exercises on a vibration platform (VM-10, Sonicworld Co.) Ten healthy women volunteers (age $21{\pm}1.3years$, height $160{\pm}2.1cm$, weight $52{\pm}4.6kg$) were selected. EMG signals four leg muscles were taken and analyzed. The exercises were performed both with 10 seconds WBV and without 10 seconds WBV. Muscle activities during WBV were compared with non-vibration stimulus. In the result, EMG signals caused by WBV were significantly higher (P<0.05) compared with non-vibration stimulus in all leg muscles and squat exercises. The increase in muscle activity caused by Whole body vibration was significantly higher (P<0.05) in LS and OS compared with HU&HS.

  • PDF

Effects on the Respiratory Function, Lower Extremity Muscle Activity and Balance for the Wellness of Stroke Patients - Focused on Whole Body Vibration Exercise Combined with Breathing Exercise - (뇌졸중 환자의 웰니스를 위한 호흡기능, 하지근활성도 및 균형에 미치는 효과 - 호흡운동을 결합한 전신진동운동을 중심으로 -)

  • Kang, Jeong-Il;Yang, Sang-Hoon;Jeong, Dae-Keun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.8
    • /
    • pp.397-405
    • /
    • 2020
  • The purpose of study was to compare respiratory function and quadriceps muscle activity in stroke patients by applying inspiratory muscle training combined with whole body vibration. In addition, the purpose of study is to present an exercise method for improving the respiratory function of stroke patients and the function of the lower limb muscles of stroke patients. Totally, 21 patients with Stroke patients were randomly assigned to two groups through clinical sampling. 11 patients who applied whole body vibration combined with respiratory exercise were randomly assigned to Experiment Group I, and 10 patients who applied placebo exercise combined with breathing exercise were randomly assigned to Experiment Group II. And for 5 weeks, 4 days/week, 1 time/day, 4 sets/1 time intervention program was implemented. Before intervention, the respiratory function was measured with a maximum inspiratory pressure meter, the lower extremity muscle activity was measured using the surface EMG, and the balance ability was measured using a bug balance test. And after 5 weeks, the post-test was re-measured and analyzed in the same way as the pre-test. In the comparison of changes within the group of experimental group I, there were significant differences in the activity and balance of the respiratory muscle strength, the biceps femoris, and the anterior tibialis muscle (p<.05). In the comparison of the changes in the experimental group I, there was a significant difference in respiratory strength and balance (p<.05). In the comparison of changes between groups, there was a significant difference in the activity of the biceps femoris and anterior tibialis (p<.01). In the future, research on protocols for respiratory exercise and whole body vibration to improve neuromuscular function is considered to be necessary.

Experimental Investigation of the Response Characteristics of Korean-seated Subjects under Vertical Vibration : (I) Apparent Mass (한국인 앉은 자세에 대한 수직 진동 응답특성의 실험적 연구: (I) 겉보기 질량(Apparent Mass))

  • 정완섭;김영태;권휴상;홍동표
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.645-650
    • /
    • 2003
  • This paper introduces attempts to obtain the 'representative'characteristics of the apparent mass (or dynamic mass) of seated Korean subjects under vertical vibration. Individual responses of driving-oint apparent masses obtained from forty one Korean subjects are illustrated. Four kinds of vibration levels and three different sitting postures are selected to collect the characteristic responses of each subject. Those individual responses are used to estimate the 'mean'apparent mass, which may be expected to be a representative model to Korean subjects. Several interesting features of the estimated apparent mass are suggested and compared to those of ISO 5982.

Study of Apparent Mass and Apparent Eccentric Mass to Vertical Whole-body Vibration by Using Strain-gage Type Six-axis Force Plate (6축 힘측정판을 이용한 수직방향 전신진동에 대한 겉보기질량 및 겉보기편심질량에 대한 고찰)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.897-904
    • /
    • 2011
  • When whole-body is exposed to vertical vibration, asymmetry shape of human body affects the response on the translational(fore-aft, lateral, vertical) and rotational(roll, pitch, yaw) motion. While the translational motion has been studied with various titles, it has been rare to study the rotational motion of human body exposed to vertical excitation because of lack of experimental equipment. This study was performed by using a 6-axis force plate installing strain gage type sensors for the rotational response. Sixteen male subjects were exposed to vertical vibration on rigid seat in order to investigate apparent mass of three translational motion and apparent eccentric mass of three rotational motion. Random signal was generated to make excitation vibration which was on an effective frequency range of 3~40 Hz, and magnitude of 0.224 m/$s^2$ r.m.s. The frequency range and magnitude used was selected for the vibration of passenger vehicle on idling condition. As the result, cross-axis apparent masses of fore-and-aft and lateral direction were not significant showing 20 % and 3 % of vertical apparent mass relatively. And apparent eccentric mass of pitch motion was dominant when compared to that of roll and yaw motion, which is reasoned by asymmetry direction of human body sitting on a seat.

Experimental Investigation of the Response Characteristics of Korean -seated Subjects under Vertical Vibration: (II) Mechanical Impedances (한국인 앉은 자세에 대한 수직 진동 -응답특성의 실험적 연구 : (II) Mechanical Impedances)

  • 정완섭;김영태;권휴상;홍동표
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.713-719
    • /
    • 2003
  • This paper introduces attempts to obtain the ‘representative’ characteristics of the mechanical impedance of seated Korean subjects under vertical vibration. Individual responses of driving-point mechanical impedance obtained from forty one Korean subjects are illustrated. Four kinds of vibration levels and three different sitting postures are selected to collect the responses of each subject. Those individual responses are used to estimate the ‘mean’ mechanical impedance, which may be expected to be a representative model to Korean subjects. Several interesting features of the estimated mechanical impedance are suggested and compared to those of ISO/DIS 5982.

Design of dynamic Characteristic of Seat using Estimated Biomechanical Model (인체 진동 모델을 이용한 시트 동적 설계)

  • 조영건;윤용산;박세진
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.811-818
    • /
    • 2000
  • This paper deals with the design of a car seat for enhancing dynamic ride quality using a Biomechanical Model that was developed from the measured whole-body vibration characteristic. For evaluation of seat ride quality, the z-axis acceleration of floor as an input of biomechanical model was measured on a driving passenger car at highway and national road. Form the floor signal and the estimated biomechanical model, overall ride value evaluated by parameter study of seat stiffness and damping. The result shows that overall ride value decreases as the seat damping increases and the sear stiffness decreases. A lot of polyurethane foams were manufactured and tried to evaluate dynamic ride quality of a seat. It is found that stiffness and damping of a seat show a linear relationship, which means the stiffness and damping are not independent each other, So the optimal seat parameters within practically achievable space are determined.

  • PDF