• Title/Summary/Keyword: 전선풍

Search Result 20, Processing Time 0.037 seconds

Electric Environmental test for Low Wind Noise Conductor Development in UHV T/L (초고압 송전선로용 저풍소음 전선 개발을 위한 전기환경 시험)

  • Lee, Dong-I.;Shin, Koo-Y.;Lee, Seong-D.;Yang, Kwang-H.;Ju, Mun-N.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.475-477
    • /
    • 2002
  • 본 논문에서는 765kV 송전선로의 일부구간에서 발생되고 있는 풍소음의 대책으로 개발된 저풍소음 도체를 소개하고 이 도체방식을 개발하기 위해 수행된 전기환경장해 및 풍소음 저감 영향에 대한 시험결과를 제시하고 있다. 저풍소음 도체는 우수한 풍소음 저감기능을 가지면서도 기존 전선에 비해 추가적인 전기환경 문제가 발생되지 않아야 하는데, 기존 전선과 달리 전선 주위에 돌기부가 있어서 전계 집중에 따른 환경장해 발생의 우려가 있다. 이러한 이유 때문에 전기환경 모의시험설비인 코로나 케이지를 이용한 코로나 발생 특성 시험을 수행하여 환경설계기준 만족 여부를 확인하였으며, 실규모 시험선로를 이용한 장기 실증시험을 실시하여 송전선로 주변에서 실제 발생 가능한 라디오 장해와 같은 전기환경 장해량에 대한 평가를 실시하여 풍소음 저감효과와 환경설계기준에 만족하는 결과를 얻을 수 있었다.

  • PDF

Characteristics of Strong Wind Occurrence in the Southwestern Region of Korea (한반도 남서지역에서 발생한 강풍의 원인별 특성 분석)

  • Kim, Baek-Jo;Lee, Seong-Lo;Park, Gil-Un
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.37-44
    • /
    • 2009
  • The characteristics of strong wind occurring over the southwestern part of the Korean peninsula are analyzed by using hourly mean wind data observed in Gusan, Mokpo, Yeosu and Wando from 1970 to 2008. The strong wind here is defined as wind speed of more than 13.9 m/s according to Korea Meteorological Administration (KMA)'s strong wind advisory. The causes of strong wind are classified into typhoon, monsoonal (wintertime continent polar air mass) and frontal (cyclone) winds. Typhoon wind is characterized by abrupt change of its speed and direction after and before landfall of typhoon and monsoonal wind by periodicity of wind speed. And frontal wind tend to be changed from southwesterly to northwesterly at observation site with location of frontal surface. Strong winds are mainly occurred in Yeosu by typhoon, Gusan and Mokpo by monsoonal wind, and Mokpo and Yeosu by frontal wind. In particular, in case of frontal wind, the frequency of strong wind in Mokpo decreases while in Yeosu it increases. Monthly frequency of strong wind is high in August in Mokpo and September in Yeosu by typhoon, January in Gusan and December in Mokpo by monsoonal wind, and in April in Mokpo and Yeosu by frontal wind. The duration less than 1 hour of strong wind is prominent in all stations.

Diurnal Variation of the Surface Wind in the Coastal Boundary Layer (沿岸境界層에서의 表層風의 日變化)

  • Choi, Hyo
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.210-216
    • /
    • 1984
  • Diurnal variations of coastal surface wind speed are analyzed with five years of hourly wind from Port Aransas, Texas. These data reveal the highest frequency of occurrence of the nighttime wind maximum near midnight, especially during those seasons when onshore flow prevails. Nighttime wind maxima with a southerly component occurred approximately three times more frequently than with a northerly component on the annual average. The neutral atmospheric stability prevails near the coast. Thus it allows downward transfer of momentum from the nocturnal low level jet under the onshore wind situation and strong wind shear between an elevated frontal and ground-based inversion for offshore wind, resulting in the nocturnal coastal surface wind maximum.

  • PDF

Icing Loads on Fixed Cables: I. Laboratory Experiments (고정케이블에 작용하는 Icing 하중 :I. 실험)

  • ;Ettema, R
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.249-263
    • /
    • 1996
  • Presented herein are the results of a laboratory study on structural loads (icing weight and wind loads) associated with icing formation on rigidly fixed, circular power-transmission cables and cylinders. The experiments were carried out using movable wind tunnel under two different conditions: refrigerated and non-refrigerated conditions. Temporal evolution of icing loads were determined in the refrigerated laboratory and wind loads for icings at several stages of icing formation were measured in the non-refrigerated laboratory.

  • PDF

Water Masses and Frontal Structures in Winter in the Northern East China Sea (동중국해 북부해역의 겨울철 수계와 전선구조)

  • 손영태;이상호;이재철;김정창
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.327-339
    • /
    • 2003
  • During the winter in February 1998, January and April 1999, interdisciplinary research was conducted in a large area including the South Sea of Korea and northern East China Sea to examine distribution and structure. Water masses identified from the observed data are Warm Water originated from Tsushima Warm Current, Yellow Sea Cold Water (Northern or Central Cold Water) and Korean Southern Sea Cold Water. In the southern Yellow Sea, Warm Water originated from Tsushima Warm Current, flowing into the Cheju Strait after turning around the western Cheju Island, makes a front of '┍' shape, which is bounded by the Yellow Sea Central Cold Water in the southern part of Daeheuksan Island and by the Yellow Sea Northern Cold Water in the eastern part of the Yangtze Bank. This front changes its corner shape and position with strength of the warm water extension toward northwestern Yellow Sea. The position and structure of the fronts off the southwestern tip of the Korean peninsular and near the Yangtze Bank varies with observation period. In the front in the South Sea of Korea, cold coastal water which if formed independently due to local cooling, ,sinks along the sloping bottom. We explained the processes of variations in the distribution and structure of these winter fronts in terms of up-wind and down-wind flow by the seasonal monsoon, heat budget through the sea surface and density difference across the fronts.

Variations of the Sea Surface Temperature Distribution and the Shelf Fronts in the Cheju Strait and the Korea Strait (한국 남해연안의 해표면 수온분포와 천해전선의 변동 특성)

  • 양성기
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.111-128
    • /
    • 1994
  • The distributions of sea surface temperature across the Cheju Strait and the Korea Strait have been measured by using a thermometer installed on board No.1 Cheju, a ferry that operates regularly between Pusan and Seogwipo. The data from 14 October 1991 to 15 August 1992 were analyzed in this paper. A clear temperature front is wormed at the adjacent sea of Geomundo, and its position is not fixed and moves north and south. The slow northward movement of the front can easily be traced, but the southward movement from March to October is obscure. The temperature contrast in the Cheju Soait and the Korea Strait is very we in this period. Some periodical fluctuations with a period of several tens of days are observed in the region of the temperature front from November to February. This fluctuation seems to be caused by winter heat flux exchange and the strong southeastward wind force. The result shows that continous observation of the sea surface temperature distribution across the Cheju Strait and the Korea Strait yields a good method for monitoring the presence of Tsushima Warm Current and the fluctuations of South Korea Coastal Water. The formation and structure of shelf front in the Cheju Strait and the Korea Strait was analysed based on the detailed oceanographic data observed during the period of 1990-1992. The analysis shows that well-defined fronts were formed through yearly around the Chuja Island, particularly, in summer. In nature, its structure and formation position can be changed easily from year % year and by season. But, in region of the Korea Strait this front is relatively weak.

  • PDF

A Study on the Distribution of precipitation with Altitude according to the Surface Pressure Type -The Case of the West Slope of Taegwallyong Area- (지상 기압배치형에 따른 고도별 강수량 분포 -대관령 서쪽 산지 사면을 중심으로-)

  • 이장렬
    • The Korean Journal of Quaternary Research
    • /
    • v.12 no.1
    • /
    • pp.17-30
    • /
    • 1998
  • 연구지역인 대관령 서쪽 산지 사면은 진부에서 동쪽으로 고속도로를 따라 약 21km 떨어진 대관령까지이며 해발고도는 500∼900m 지형경사는 3.3%이다. 1989년 5월∼1992년 5 월에 진부에서 대관령 쪽으로 영동고속도로를 따라 진부(고도 544m) 간평기(고도 576m) 유 천리(고도 600m) 싸리재(고도800m) 대관령(고도 842m)등의 5개지점을 정하여 일 강수량을 측정하였다 각 고도별 일 강수량 자료를 기초로 한반도의 지상 기압배치형에 따른 대관령 서쪽 산지의 고도별 강수량 분포의 특성을 고찰하였다,. 이결과를 용약하면 다음과 같다. 총 강수일 258일을 지상 기압배치형(기압골, 저기압, 시베리아고기압, 장마전선, 고기압, 태풍, 오호츠크해고기압)에 따라 7가지 형으로 분류하였다, 이들중 기압골이 나타난 날이 113일로 제일 많고 오호츠크해고기압이 나타난 날은 8일로 가장적었다. 고도별 일평균 강수량은 태 풍이 나타났을 때 17,5∼54,4mm로 제일많았고 시베리아고기압이 나타났을 때는 5.9∼ 19.8mm로 제일 적었다, 대관령 서쪽 산지 사면에서 강수량이 제일 많은 고도는 대관령이고 제일적은 고도는 간평리이다, 태풍과 오호츠크해고기압이 출현한 경우는 고도가 증가할수록 강수량도 많아졌다. 간평리와 대관령 고도의 강수량 분포에 관한 사례분석(1989.5∼1991.12) 에서 기압골, 저기압, 장마전선등이 나타난 36일 시베리아고기압이 나타난 1일은 간평리가 대관령보다 강수량이 많았다.

Relationship between Some Weather Conditions and Immigration of the Brown Planthopper, Nilaparvata lugens Stal (벼멸구의 비래와 기상과의 관계)

  • 엄기백;박중수;이영인;최궤문;이문호;이정운
    • Korean journal of applied entomology
    • /
    • v.27 no.4
    • /
    • pp.200-210
    • /
    • 1988
  • ABSTRACT Brown planthopper collection data by 151 light traps located throughout the southern part of Korean peninsula for 7 years from 1981 thru 1987 were analysed with each immigration wave in relation to daily weather charts when the immigration occurred, and summarized as below. 1) Most of the main immigration took place during the mid and late July, though there were some variations from year to year. 2) Number of the BPH collected at one time, and the number of the area where those immigrants where collected were increased when it occurred closer to the end of July. 3) Weather conditions when the immigration took place were divided into 4 types; (a) depression with stationary front passed over the central peninsula (A type, 12 times); (b) depression with stationary front passed over the southern sea (B type, 5 times); (c) stationary front passed over the central peninsula(C type, 7 times); (d) without depression and stationary front (D type, 2 times). 4) Whatever the types of the weather, those immigrations started to land from south-west part of the peninsula, and those numbers of immigrants were also grater at those south-western areas. 5) When common weather factors were counted from each weather chart of the days when thcse immigrations took place, presence of wind from south-west was 26 times, presence of stationary front was 24 times, and presence of depression was 17 times out of all 26 cases of immigration. 6) Therefore, it could be concluded that the immigration of the BPH into Korea is simply accompanied by the north$.$easterly flowing air currents, connected from south-east part of China through Korean peninsula. And other factors seem to be related with inducing their landing.anding.

  • PDF

Study on the Design Standard for the Wind Resistant on Transmission Tower (송전용 풍하중 설계기준 합리화를 위한 기술검토)

  • Shin, Koo-Yong;Lee, Dong-IL;Shin, Tae-Woo;Choi, Jin-Sung;Bang, Hang-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.652-654
    • /
    • 2007
  • 본 논문에서는 국가의 기간 에너지원인 전력망을 구성하는 구조물인 송전철탑의 설계하중에 가장 큰 요인으로 작용하는 기준풍속 산정을 위한 연구내용을 고찰하고자 한다. 현행의 송전용 지지물 설계 기준은 전기설비기술기준에 고시된 가공전선로 지지물에 관한 기준을 토대로 전력사의 실무적인 설계를 위하여 보다 구체화하여 작성된 한국전력공사 송전설계기준에 근거하고 있다. 이러한 기존 설계기준은 1985년 이전의 기상자료를 토대로 제정되어 본 논문에서는 1980년대 후반부터 약 20년간의 기상청의 풍향, 풍속자료를 추가로 확보하고 이를 분석하여 재현기간을 반영한 지역별 설계기준 풍속 Map을 제시하였다. 이러한 흐름으로 최근의 기상자료를 포함하여 보다 정확한 분석을 도모하고, 사회 환경의 급변함에 따라 우려되는 기상이변 등을 고려한 안전성과 경제성이 향상된 기준풍속 산정과정을 고찰하고, IEC 등 해외 주요국의 풍하중 설계기준에서 반영하고 있는 국부지형을 고려한 설계방법에 대한 국내 기준 적용성 평가를 위한 비교분석 결과를 소개하였다.

  • PDF

Sea Surface Cold Water near the Southeastern Coast of Korea: Wind Effect (한국(韓國) 남동해안(南東海岸)부근의 해표면(海表面) 냉수(冷水) : 바람의 영향(影響))

  • Byun, Sang-Kyung
    • 한국해양학회지
    • /
    • v.24 no.3
    • /
    • pp.121-131
    • /
    • 1989
  • Cold water observed at sea surface near the southeastern coast of Korea in summers 1982 and 1983 was studied by using data of hydrography, sea level, wind and satellite image. In summer season when water column shows 3-layered structure a "full" upwelling occurs by southwesterly transient wind continuing for several days. During upwelling event, surface water of high temperature moved offshore, middle water of low temperature outcropped to the sea surface, and sea level was lowered, however, equilibrium depth of surface layer was not changed. It may be concluded that cold water at the surface originates from middle layer and strong surface front is a result of surfacing of seasonal thermocline. In order to see the relationship between position of surface front and wind input, a model of Csanady (1982) was applied in a rigid lid approximation. The results show that frontal position can be determined by wind input and water structure near the southeastern coast of Korea. Cold water in summer can appear at the sea surface only when there is wind larger than a minimum wind impulse of order $10m^2/sec$.

  • PDF