• Title/Summary/Keyword: 전산 유체 해석

Search Result 2,587, Processing Time 0.031 seconds

Analysis of High Sea-worthiness Offshore Wind Turbine (고 내항성 해상풍력 발전기 해석)

  • Ahn, Gyu-Jung;Koo, Bon-Guk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Research was conducted to analyze and improve the kinetic performance of offshore wind power generators. The shape used in this study was taken with reference to the previous paper, and the size of the repair area was designed at 80%, 60%, 40%, and 20%, respectively, and the exercise performance was confirmed accordingly. The sea state was calculated in Sea State 4, 5, and 6. In the calculation process, the calculation was performed using commercial computational hydrodynamics (ANSYS) and AQUA. In the case of overall exercise performance, it was confirmed that the smaller the size of the repair area, the smaller the exercise such as heave, roll, and pitch. However, it was confirmed that in the case of a shape in which the size of the repair area was rapidly reduced, there may be cases in which the restoration performance was not satisfied when the restoration calculation was performed. In addition, it was confirmed that there may be an appropriate repair surface depending on the sea condition.

A Comparative Study of Numerical and Theoretical Predictions of Oil Outflows from Damaged Ships (손상 선박 기름 유출량 추정을 위한 수치해석과 이론식의 비교 연구)

  • Yo-Seop, Moon;Je-In, Kim;Il-Ryong, Park;Seong-Bu, Suh;Seung-Guk, Lee;Hyuek-Jin, Choi;Sa-Young, Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.400-412
    • /
    • 2022
  • This paper provides the results of numerical and theoretical predictions of oil outflows from damaged single-hull and double-hull ships.Theoretical equations derived from the unsteady Bernoulli equation and a CFD method for multi-phase flow analysis were used to estimate the oil outflow rate from cargo tank. The predicted oil outflow rate from a single-hull cargo tank damaged due to grounding and collision accidents showed a good agreement with the available experimental results in both numerical and theoretical analyses. However, in the case of the double-hull conditions, the time variation of the amount of water and oil mixture inside the ballast tank predicted by the theoretical equation showed some different behavior from the numerical results. The reason was that the interaction of the oil flow with the water inflow in the ballast tank was not reflected in the theoretical equations. In the problems of the initial pressure condition in the cargo and ballast tanks, the oil outflow and water inflow were delayed at the pressure condition that the tanks were sealed. When the flow interaction between the oil and water in the ballast tank was less complicated, the theoretical and the numerical results showed a good agreement with each other.

Design and Pressure Loss Evaluation of Vacuum Brazed Cooling Passage for Full Authority Digital Engine Control (항공기용 엔진제어기의 진공 브레이징 냉각유로 설계 및 압력손실 평가)

  • Han, Myeongjae;Seol, Jinwoon;Jeong, Seungho;Cha, Minkyung;Jang, Hoyoun;Kim, Junghoe
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.72-78
    • /
    • 2022
  • A vacuum brazed cooling passage for an aircraft engine controller was designed. In order to predict the total pressure loss, which is the main design factor of the cooling passage, theoretical and numerical methods for the major loss and the minor loss considering the overall shape of the cooling passage are presented. This design and evaluation method can predict the pressure loss of the complex cooling passage shape for various flow conditions at the initial design step.

Computational Study on the Application of Porous Media to Fluid Flow in Exhaust Gas Scrubbers (배기가스 세정장치내 유체 유동에 대한 다공성 매질 적용 기반의 전산해석적 연구)

  • Hong, Jin-pyo;Yoon, Sang-hwan;Yoon, Hyeon-kyu;Kim, Lae-sung;An, Jun-tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Exhaust gases emitted from internal combustion engines contain nitrogen oxides (NOx) and sulfur oxides (SOx), which are major air pollutants causing acid rain, respiratory diseases, and photochemical smog. As a countermeasure, scrubber systems are being studied extensively. In this study, the pressure drop characteristics were analyzed by changing the exhaust gas inflow velocity using a scrubber for a 700 kW engine as a model. In addition, the fluid flow inside the scrubber and the behavioral characteristics of the droplets were studied using CFD, and the design compatibility of the cleaning device was verified. Flow analysis was performed using inertial and viscous resistances by applying porous media to the complex shape of the scrubber. The speed of the exhaust passing through the outlet nozzle from the inlet was determined through the droplet behavior analysis by spraying, and the flow characteristics for the pressure drop were studied. In addition, it was confirmed through computational analysis whether there was a stagnation section in the exhaust gas flow in the scrubber or the sprayed droplets were in good contact with the exhaust gas.

A Numerical Study on the Flame Arrestor for Safety Valve of Hydrogen (수소 안전밸브용 역화방지기의 성능 평가에 대한 수치해석 연구)

  • OH, SEUNG JUN;YOON, JEONG HWAN;KIM, SI POM;CHOI, JEONGJU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.391-399
    • /
    • 2022
  • Hydrogen is one of the energy carriers and has high energy efficiency relative to mass. It is an eco-friendly fuel that makes only water (H2O) as a by-product after use. In order to use hydrogen conveniently and safely, development of production, storage and transfer technologies is required and attempts are being made to apply hydrogen as an energy source in various fields through the development of the technology. For transporting and storing hydrogen include high-pressure hydrogen gas storage, a type of storage technologies consist of cryogenic hydrogen liquid storage, hydrogen storage alloy, chemical storage by adsorbents and high-pressure hydrogen storage containers have been developed in a total of four stages. The biggest issue in charging high-pressure hydrogen gas which is a combustible gas is safety and the backfire prevention device is that prevents external flames from entering the tank and prevents explosion and is essential to use hydrogen safely. This study conducted a numerical analysis to analyze the performance of suppressing flame propagation of 2, 3 inch flame arrestor. As a result, it is determined that, where the flame arrestor is attached, the temperature would be lowered below the temperature of spontaneous combustion of hydrogen to suppress flame propagation.

Numerical Analysis for Supercavitation Characteristics around Underwater Vehicle according to Ventilated Gas Temperature (분사가스 온도에 따른 수중운동체 주위 초공동 특성 분석을 위한 수치해석)

  • Hwang, Hyunsung;Park, Warngyu;Nguyen, Van Tu;Kim, Donghyun;Nguyen, Duy Trong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.487-500
    • /
    • 2022
  • Supercavitation is a phenomenon in which the cavity covers the entire underwater vehicle. The purpose of this paper is to compare and analyze the thermal effect on the cavity characteristics by changing the ventilated gas temperature through computational analysis. For this study, a homogeneous mixture model based on the 3D Navier-Stokes equation was used. As a phase change model, it is its own code considering both pressure change and temperature change. A dimensionless number Tm was presented to analyze the numerical results, and as the Tm increased, the cavity length increased by about 3.6 times and the cavity width by about 3.3 times at 393.15 K compared to room temperature. Analyzing these thermal effects, it was confirmed that rapid heat exchange and heat transfer between the gas phase and the liquid phase occurred at the location where the ventilated gas was sprayed, affecting the cavity characteristics. In addition, it can be confirmed that the initial cavity surface becomes unstable as the ventilated gas temperature increases, and it can be confirmed based on the numerical analysis results that the critical temperature at which the cavity surface becomes unstable is 373.15 K.

THD Lubrication Analysis of a Surface-Textured Parallel Thrust Bearing with Rectangular Grooves: Part 2 - Effect of Groove Depth (사각형 그루브로 Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 제2보 - 그루브 깊이의 영향)

  • TaeJo Park;JeongGuk Kang
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2023
  • Surface texturing is widely applied to friction surfaces of various machine elements. Most of the theoretical studies have focused on isothermal (ISO) analyses which consider constant lubricant viscosity. However, there have been limited studies on the effect of oil temperature increase owing to viscous shear. Following the first part of the present study that investigated the effects of film-temperature boundary condition (FTBC) and groove number on the thermohydrodynamic (THD) lubrication characteristics of a surface-textured parallel thrust bearing with multiple rectangular grooves, this study focuses on the effect of groove depths. Current study numerically analyzes the continuity, Navier-Stokes, and energy equations with temperature-viscosity-density relations using a commercial computational fluid dynamics (CFD) software, FLUENT. The results of variation in temperature, velocity, and pressure distributions as well as load-carrying capacity (LCC) and friction force indicate that groove depth and FTBC significantly influence the temperature distribution and pressure generation. The LCC is maximum near the groove depth at which the vortex starts, smaller than the ISO result. For intense grooves, the LCC of THD may be larger than that from ISO. The frictional force decreases as the groove becomes deeper, and decreases more significantly in the case of THD. The study shows that groove depth significantly influences the THD lubrication characteristics of surface-textured parallel thrust bearings.

M4 Semi-Freejet Test with Full-scale Vehicle Model (실기체급 비행체 모델에 대한 M4 준자유류 시험)

  • Juhyun Bae;Changwon Lim;Hojin Choi;Sangwook Jin;Jeongwoo Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.63-73
    • /
    • 2022
  • Investigation on operation of the test apparatus for the M4 semi-freejet tests with a full-scale vehicle model was carried out utilizing domestic facilities. An integrated design of the experimental apparatus and the vehicle model was obtained through iterative computational fluid dynamics (CFD) analysis. The test results showed that the M4 nozzle of the apparatus was fully expanded to provide required test conditions. It was also found that the intake of the vehicle model successfully started, and the corresponding shadowgraph images were recorded during the test. A variable nozzle of the model was set to adjust the back pressure of the model combustor, and wall-static pressures were measured to obtain the pressure distribution at the main locations of the model. The flame of torch ignitors and pilot fuel ignition were observed in a flame-holder of the combustor.

High-Fidelity Ship Airwake CFD Simulation Method Using Actual Large Ship Measurement and Wind Tunnel Test Results (대형 비행갑판을 갖는 함정과 풍동시험 결과를 활용한 고신뢰도 함정 Airwake 예측)

  • Jindeog Chung;Taehwan Cho;Sunghoon Lee;Jaehoon Choi;Hakmin Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.135-145
    • /
    • 2023
  • Developing high-fidelity Computational Fluid Dynamics (CFD) simulation methods used to evaluate the airwake characteristics along a flight deck of a large ship, the various kind of data such as actual ship measurement and wind tunnel results are required to verify the accuracy of CFD simulation. Inflow velocity profile at the bow, local unsteady flow field data around the flight deck, and highly reliable wind tunnel data which were measured after reviewing Atmospheric Boundary Layer (ABL) simulation and Reynolds Number effects were also used to determine the key parameters such as turbulence model, time resolution and accuracy, grid resolution and type, inflow condition, domain size, simulation length, and so on in STAR CCM+. Velocity ratio and turbulent intensity difference between Full-scale CFD and actual ship measurement at the measurement points show less than 2% and 1.7% respectively. And differences in velocity ratio and turbulence intensity between wind tunnel test and small-scale CFD are both less than 2.2%. Based upon this fact, the selected parameters in CFD simulation are highly reliable for a specific wind condition.

Lubrication Analysis of Parallel Slider Bearing with Nanolubricant (나노윤활유를 사용하는 평행 슬라이더 베어링의 윤활해석)

  • TaeJo Park;JeongGuk Kang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.87-93
    • /
    • 2023
  • Nanofluids are dispersions of particles smaller than 100 nm (nanoparticles) in base fluids. They exhibit high thermal conductivity and are mainly applied in cooling applications. Nanolubricants use nanoparticles in base oils as lubricant additives, and have recently started gathering increased attention owing to their potential to improve the tribological and thermal performances of various machinery. Nanolubricants reduce friction and wear, mainly by the action of nanoparticles; however, only a few studies have considered the rheological properties of lubricants. In this study, we adopt a parallel slider bearing model that does not generate geometrical wedge effects, and conduct thermohydrodynamic (THD) analyses to evaluate the effect of higher thermal conductivity and viscosity, which are the main rheological properties of nanolubricants, on the lubrication performances. We use a commercial computational fluid dynamics code, FLUENT, to numerically analyze the continuity, Navier-Stokes, energy equations with temperature-viscosity-density relations, and thermal conductivity and viscosity models of the nanolubricant. The results show the temperature and pressure distributions, load-carrying capacity (LCC), and friction force for three film-temperature boundary conditions (FTBCs). The effects of the higher thermal conductivity and viscosity of the nanolubricant on the LCC and friction force differ significantly, according to the FTBC. The thermal conductivity increases with temperature, improving the cooling performance, reducing LCC, and slightly increasing the friction. The increase in viscosity increases both the LCC and friction. The analysis method in this study can be applied to develop nanolubricants that can improve the tribological and cooling performances of various equipment; however, additional research is required on this topic.